| | Some definitions of interest. |
|
| w-action | Def Action(i) == action(w-action-dec(w.TA;w.M;i)) |
|
| world | Def World
Def == T:Id Id Type
Def == TA:Id Id Type
Def == M:IdLnk Id Type
Def == (i:Id    (x:Id T(i,x))) (i:Id    action(w-action-dec(TA;M;i)))
Def == (i:Id    ({m:Msg(M)| source(mlnk(m)) = i } List)) Top |
| | | Thm* World Type{i'} |
|
| Id | Def Id == Atom  |
| | | Thm* Id Type |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| not | Def A == A  False |
| | | Thm* A:Prop. ( A) Prop |
|
| w-isnull | Def isnull(a) == isl(a) |
|
| w-val | Def val(a) == 2of(outr(a)) |
|
| w-valtype | Def valtype(i;a) == kindcase(kind(a);a.w.TA(i,a);l,tg.w.M(l,tg)) |