| Some definitions of interest. |
|
w-E | Def E == {p:(Id )|  isnull(a(1of(p);2of(p))) } |
|
world | Def World
Def == T:Id Id Type
Def == TA:Id Id Type
Def == M:IdLnk Id Type
Def == (i:Id    (x:Id T(i,x))) (i:Id    action(w-action-dec(TA;M;i)))
Def == (i:Id    ({m:Msg(M)| source(mlnk(m)) = i } List)) Top |
| | Thm* World Type{i'} |
|
Id | Def Id == Atom  |
| | Thm* Id Type |
|
w-eq-E | Def p = q == 1of(p) = 1of(q) (2of(p)= 2of(q)) |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |
|
w-a | Def a(i;t) == 1of(2of(2of(2of(2of(w)))))(i,t) |
|
pi1 | Def 1of(t) == t.1 |
| | Thm* A:Type, B:(A Type), p:(a:A B(a)). 1of(p) A |
|
pi2 | Def 2of(t) == t.2 |
| | Thm* A:Type, B:(A Type), p:(a:A B(a)). 2of(p) B(1of(p)) |
|
w-isnull | Def isnull(a) == isl(a) |