| Some definitions of interest. |
|
world | Def World
Def == T:Id Id Type
Def == TA:Id Id Type
Def == M:IdLnk Id Type
Def == (i:Id    (x:Id T(i,x))) (i:Id    action(w-action-dec(TA;M;i)))
Def == (i:Id    ({m:Msg(M)| source(mlnk(m)) = i } List)) Top |
| | Thm* World Type{i'} |
|
Msg | Def Msg(M) == l:IdLnk t:Id M(l,t) |
| | Thm* M:(IdLnk Id Type). Msg(M) Type |
|
IdLnk | Def IdLnk == Id Id  |
| | Thm* IdLnk Type |
|
eq_lnk | Def a = b == eqof(IdLnkDeq)(a,b) |
| | Thm* a,b:IdLnk. a = b  |
|
w-E | Def E == {p:(Id )|  isnull(a(1of(p);2of(p))) } |
|
Id | Def Id == Atom  |
| | Thm* Id Type |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
filter | Def filter(P;l) == reduce( a,v. if P(a) [a / v] else v fi;nil;l) |
| | Thm* T:Type, P:(T  ), l:T List. filter(P;l) T List |
|
lsrc | Def source(l) == 1of(l) |
| | Thm* l:IdLnk. source(l) Id |
|
mlnk | Def mlnk(m) == 1of(m) |
| | Thm* M:(IdLnk Id Type), m:Msg(M). mlnk(m) IdLnk |
| | Thm* the_es:ES, m:Msg. mlnk(m) IdLnk |
|
w-M | Def w.M == 1of(2of(2of(w))) |
|
w-loc | Def loc(e) == 1of(e) |
|
w-m | Def m(i;t) == 1of(2of(2of(2of(2of(2of(w))))))(i,t) |
|
w-time | Def time(e) == 2of(e) |