Definitions mb event system 3 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
worldDef World
Def == T:IdIdType
Def == TA:IdIdType
Def == M:IdLnkIdType
Def == (i:Id(x:IdT(i,x)))(i:Idaction(w-action-dec(TA;M;i)))
Def == (i:Id({m:Msg(M)| source(mlnk(m)) = i } List))Top
Thm* World  Type{i'}
MsgDef Msg(M) == l:IdLnkt:IdM(l,t)
Thm* M:(IdLnkIdType). Msg(M Type
IdLnkDef IdLnk == IdId
Thm* IdLnk  Type
eq_lnkDef a = b == eqof(IdLnkDeq)(a,b)
Thm* a,b:IdLnk. a = b  
w-EDef E == {p:(Id)| isnull(a(1of(p);2of(p))) }
IdDef Id == Atom
Thm* Id  Type
assertDef b == if b True else False fi
Thm* b:b  Prop
filterDef filter(P;l) == reduce(a,v. if P(a) [a / v] else v fi;nil;l)
Thm* T:Type, P:(T), l:T List. filter(P;l T List
lsrcDef source(l) == 1of(l)
Thm* l:IdLnk. source(l Id
mlnkDef mlnk(m) == 1of(m)
Thm* M:(IdLnkIdType), m:Msg(M). mlnk(m IdLnk
Thm* the_es:ES, m:Msg. mlnk(m IdLnk
w-MDef w.M == 1of(2of(2of(w)))
w-locDef loc(e) == 1of(e)
w-mDef m(i;t) == 1of(2of(2of(2of(2of(2of(w))))))(i,t)
w-timeDef time(e) == 2of(e)

About:
productproductlistconsnilboolifthenelse
assertatomsetlambdaapplyfunctionuniverse
equalmembertoppropfalsetrueall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 3 Sections EventSystems Doc