| Some definitions of interest. |
|
fair-fifo | Def FairFifo
Def == ( i:Id, t: , l:IdLnk. source(l) = i  onlnk(l;m(i;t)) = nil Msg List)
Def == & ( i:Id, t: .
Def == & ( isnull(a(i;t))
Def == & (
Def == & (( x:Id. s(i;t+1).x = s(i;t).x vartype(i;x))
Def == & (& m(i;t) = nil Msg List)
Def == & ( i:Id, t: , l:IdLnk.
Def == & ( isrcv(l;a(i;t))
Def == & (
Def == & (destination(l) = i
Def == & (& ||queue(l;t)|| 1 & hd(queue(l;t)) = msg(a(i;t)) Msg)
Def == & ( l:IdLnk, t: .
Def == & ( t': .
Def == & (t t' & isrcv(l;a(destination(l);t')) queue(l;t') = nil Msg List) |
|
w-E | Def E == {p:(Id )|  isnull(a(1of(p);2of(p))) } |
|
w-sender | Def sender(e) == <source(lnk(kind(e))),mu( t.match(lnk(kind(e));t;time(e)))> |
|
w-match | Def match(l;t;t')
Def == (||snds(l;t)|| ||rcvs(l;t')||)
Def == (||rcvs(l;t')||< ||snds(l;t)||+||onlnk(l;m(source(l);t))||) |
|
world | Def World
Def == T:Id Id Type
Def == TA:Id Id Type
Def == M:IdLnk Id Type
Def == (i:Id    (x:Id T(i,x))) (i:Id    action(w-action-dec(TA;M;i)))
Def == (i:Id    ({m:Msg(M)| source(mlnk(m)) = i } List)) Top |
| | Thm* World Type{i'} |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
isrcv | Def isrcv(k) == isl(k) |
| | Thm* k:Knd. isrcv(k)  |
|
lnk | Def lnk(k) == 1of(outl(k)) |
| | Thm* k:Knd. isrcv(k)  lnk(k) IdLnk |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
w-ekind | Def kind(e) == kind(act(e)) |
|
w-time | Def time(e) == 2of(e) |