mb event system 4 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def Id == Atom

is mentioned by

Thm* l:IdLnk, tg:Id, L:Knd List. Feasible(only L sends on (l with tg))[ma-single-sframe-feasible]
Thm* x:Id, L:Knd List, t:Type. t  Feasible(only members of L affect x :t)[ma-single-frame-feasible]
Thm* x:Id, t:Type, v:t. Feasible(x : t initially x = v)[ma-single-init-feasible]
Thm* ltg:(IdLnkIdType), i:Id. (ltg  da-outlinks(;i))  False[da-outlinks-empty]
Def MsgAForm
Def == x:Id fp-> Topx:Knd fp-> Typex:Id fp-> Topx:Id fp-> Top
Def == x:KndId fp-> Topx:KndIdLnk fp-> Topx:Id fp-> Topx:IdLnkId fp-> Top
Def == Top
[msg-form]
Def ma-sframe-compatible(AB)
Def == kl:(KndIdLnk), tg:Id.
Def == (kl  dom(1of(2of(2of(2of(2of(2of(A)))))))
Def == (
Def == ((tg  map(p.1of(p);1of(2of(2of(2of(2of(2of(A))))))(kl)))
Def == (
Def == (<2of(kl),tg dom(1of(2of(2of(2of(2of(2of(2of(2of(A)))))))))
Def == (
Def == (<2of(kl),tg dom(1of(2of(2of(2of(2of(2of(2of(2of(B)))))))))
Def == (
Def == (deq-member(KindDeq;1of(kl);1of(2of(2of(2of(2of(2of(2of(2of(
Def == (deq-member(KindDeq;1of(kl);1of(B))))))))(<2of(kl),tg>)))
Def == & (kl  dom(1of(2of(2of(2of(2of(2of(B)))))))
Def == & (
Def == & ((tg  map(p.1of(p);1of(2of(2of(2of(2of(2of(B))))))(kl)))
Def == & (
Def == & (<2of(kl),tg dom(1of(2of(2of(2of(2of(2of(2of(2of(B)))))))))
Def == & (
Def == & (<2of(kl),tg dom(1of(2of(2of(2of(2of(2of(2of(2of(A)))))))))
Def == & (
Def == & (deq-member(KindDeq;1of(kl);1of(2of(2of(2of(2of(2of(2of(2of(
Def == & (deq-member(KindDeq;1of(kl);1of(A))))))))(<2of(kl),tg>)))
[ma-sframe-compatible]
Def ma-frame-compatible(AB)
Def == kx:(KndId). 
Def == (kx  dom(1of(2of(2of(2of(2of(A))))))
Def == (
Def == (2of(kx dom(1of(2of(2of(2of(2of(2of(2of(A))))))))
Def == (
Def == (2of(kx dom(1of(2of(2of(2of(2of(2of(2of(B))))))))
Def == (
Def == (deq-member(KindDeq;1of(kx);1of(2of(2of(2of(2of(2of(2of(
Def == (deq-member(KindDeq;1of(kx);1of(B)))))))(2of(kx))))
Def == & (kx  dom(1of(2of(2of(2of(2of(B))))))
Def == & (
Def == & (2of(kx dom(1of(2of(2of(2of(2of(2of(2of(B))))))))
Def == & (
Def == & (2of(kx dom(1of(2of(2of(2of(2of(2of(2of(A))))))))
Def == & (
Def == & (deq-member(KindDeq;1of(kx);1of(2of(2of(2of(2of(2of(2of(
Def == & (deq-member(KindDeq;1of(kx);1of(A)))))))(2of(kx))))
[ma-frame-compatible]
Def Feasible(M)
Def == xdom(1of(M)). T=1of(M)(x  T
Def == kdom(1of(2of(M))). T=1of(2of(M))(k  Dec(T)
Def == adom(1of(2of(2of(2of(M))))). p=1of(2of(2of(2of(M))))(a 
Def == &s:State(1of(M)). Dec(v:1of(2of(M))(locl(a))?Top. p(s,v))
Def == kxdom(1of(2of(2of(2of(2of(M)))))). 
Def == ef=1of(2of(2of(2of(2of(M)))))(kx  M.frame(1of(kx) affects 2of(kx))
Def == kldom(1of(2of(2of(2of(2of(2of(M))))))). 
Def == & snd=1of(2of(2of(2of(2of(2of(M))))))(kl  tg:Id. 
Def == & (tg  map(p.1of(p);snd))  M.sframe(1of(kl) sends <2of(kl),tg>)
[ma-feasible]
Def M1 || M2
Def == M1 ||decl M2
Def == & 1of(2of(2of(M1))) || 1of(2of(2of(M2)))
Def == & 1of(2of(2of(2of(M1)))) || 1of(2of(2of(2of(M2))))
Def == & 1of(2of(2of(2of(2of(M1))))) || 1of(2of(2of(2of(2of(M2)))))
Def == & 1of(2of(2of(2of(2of(2of(M1)))))) || 1of(2of(2of(2of(2of(2of(M2))))))
Def == & 1of(2of(2of(2of(2of(2of(2of(M1))))))) || 1of(2of(2of(2of(2of(2of(2of(
Def == & 1of(2of(2of(2of(2of(2of(2of(M1))))))) || 1of(M2)))))))
Def == & 1of(2of(2of(2of(2of(2of(2of(2of(
Def == & 1of(M1)))))))) || 1of(2of(2of(2of(2of(2of(2of(2of(M2))))))))
[ma-compatible]
Def M1  M2
Def == mk-ma(1of(M1 1of(M2);
Def == mk-ma(1of(2of(M1))  1of(2of(M2));
Def == mk-ma(1of(2of(2of(M1)))  1of(2of(2of(M2)));
Def == mk-ma(1of(2of(2of(2of(M1))))  1of(2of(2of(2of(M2))));
Def == mk-ma(1of(2of(2of(2of(2of(M1)))))  1of(2of(2of(2of(2of(M2)))));
Def == mk-ma(1of(2of(2of(2of(2of(2of(M1))))))  1of(2of(2of(2of(2of(2of(
Def == mk-ma(1of(2of(2of(2of(2of(2of(M1))))))  1of(M2))))));
Def == mk-ma(1of(2of(2of(2of(2of(2of(2of(
Def == mk-ma(1of(M1)))))))  1of(2of(2of(2of(2of(2of(2of(M2)))))));
Def == mk-ma(1of(2of(2of(2of(2of(2of(2of(2of(
Def == mk-ma(1of(M1))))))))  1of(2of(2of(2of(2of(2of(2of(2of(M2)))))))))
[ma-join]
Def M1 ||decl M2 == 1of(M1) || 1of(M2) & 1of(2of(M1)) || 1of(2of(M2))[ma-compatible-decls]
Def M1  M2
Def == 1of(M1 1of(M2) & 1of(2of(M1))  1of(2of(M2))
Def == & 1of(2of(2of(M1)))  1of(2of(2of(M2)))
Def == & & 1of(2of(2of(2of(M1))))  1of(2of(2of(2of(M2))))
Def == & & 1of(2of(2of(2of(2of(M1)))))  1of(2of(2of(2of(2of(M2)))))
Def == & & 1of(2of(2of(2of(2of(2of(M1))))))  1of(2of(2of(2of(2of(2of(M2))))))
Def == & & 1of(2of(2of(2of(2of(2of(2of(M1)))))))  1of(2of(2of(2of(2of(2of(2of(
Def == & & 1of(2of(2of(2of(2of(2of(2of(M1)))))))  1of(M2)))))))
Def == & & 1of(2of(2of(2of(2of(2of(2of(2of(
Def == & & 1of(M1))))))))  1of(2of(2of(2of(2of(2of(2of(2of(M2))))))))
[ma-sub]
Def M.sframe(k sends <l,tg>)
Def == L != 1of(2of(2of(2of(2of(2of(2of(2of(
Def == L != 1of(M))))))))(<l,tg>) ==> deq-member(KindDeq;k;L)
[ma-sframe]
Def M.send(k;l;s;v;ms;i)
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> ms
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> =
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> if source(l) = i
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> if concat(map(tgf.
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> if map(x.
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> if <1of(tgf),x>;2of(tgf)
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> if <1of(tgf),x>;(s
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> if <1of(tgf),x>;,v));L))
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> else nil fi
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==>  (tg:Id
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==>  (if source(l) = i
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==>  (if M.da(rcv(ltg))
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==>  (else Top fi) List
[ma-send]
Def M.ef(k,x,s,v,w)
Def == E != 1of(2of(2of(2of(2of(M)))))(<k,x>) ==> w = E(s,v M.ds(x)
[ma-ef]
Def MsgA
Def == ds:x:Id fp-> Type
Def == da:a:Knd fp-> Type
Def == x:Id fp-> ds(x)?Voida:Id fp-> State(ds)ma-valtype(da; locl(a))Prop
Def == kx:KndId fp-> State(ds)ma-valtype(da; 1of(kx))ds(2of(kx))?Void
Def == kl:KndIdLnk fp-> (tg:Id
Def == kl:KndIdLnk fp-> (State(ds)ma-valtype(da; 1of(kl))
Def == kl:KndIdLnk fp-> ((da(rcv(2of(kl); tg))?Void List)) List
Def == x:Id fp-> Knd Listltg:IdLnkId fp-> Knd ListTop
[msga]
Def State(ds) == x:Idds(x)?Top[ma-state]

In prior sections: mb event system 1 mb event system 2 mb event system 3

Try larger context: EventSystems IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

mb event system 4 Sections EventSystems Doc