Thm* x:Id, L:Knd List, t:Type. t  Feasible(only members of L affect x :t) | [ma-single-frame-feasible] |
Thm* ltg:(IdLnk Id Type), i:Id. (ltg da-outlinks(;i))  False | [da-outlinks-empty] |
Thm* eq:EqDecider(A), x:A, v,P:Top. z != x : v(x) ==> P(a,z) ~ (True  P(x,v)) | [fpf-val-single1] |
Def ma-sframe-compatible(A; B)
Def == kl:(Knd IdLnk), tg:Id.
Def == ( kl dom(1of(2of(2of(2of(2of(2of(A)))))))
Def == (
Def == ((tg map( p.1of(p);1of(2of(2of(2of(2of(2of(A))))))(kl)))
Def == (
Def == ( <2of(kl),tg> dom(1of(2of(2of(2of(2of(2of(2of(2of(A)))))))))
Def == (
Def == ( <2of(kl),tg> dom(1of(2of(2of(2of(2of(2of(2of(2of(B)))))))))
Def == (
Def == ( deq-member(KindDeq;1of(kl);1of(2of(2of(2of(2of(2of(2of(2of(
Def == ( deq-member(KindDeq;1of(kl);1of(B))))))))(<2of(kl),tg>)))
Def == & ( kl dom(1of(2of(2of(2of(2of(2of(B)))))))
Def == & (
Def == & ((tg map( p.1of(p);1of(2of(2of(2of(2of(2of(B))))))(kl)))
Def == & (
Def == & ( <2of(kl),tg> dom(1of(2of(2of(2of(2of(2of(2of(2of(B)))))))))
Def == & (
Def == & ( <2of(kl),tg> dom(1of(2of(2of(2of(2of(2of(2of(2of(A)))))))))
Def == & (
Def == & ( deq-member(KindDeq;1of(kl);1of(2of(2of(2of(2of(2of(2of(2of(
Def == & ( deq-member(KindDeq;1of(kl);1of(A))))))))(<2of(kl),tg>))) | [ma-sframe-compatible] |
Def ma-frame-compatible(A; B)
Def == kx:(Knd Id).
Def == ( kx dom(1of(2of(2of(2of(2of(A))))))
Def == (
Def == ( 2of(kx) dom(1of(2of(2of(2of(2of(2of(2of(A))))))))
Def == (
Def == ( 2of(kx) dom(1of(2of(2of(2of(2of(2of(2of(B))))))))
Def == (
Def == ( deq-member(KindDeq;1of(kx);1of(2of(2of(2of(2of(2of(2of(
Def == ( deq-member(KindDeq;1of(kx);1of(B)))))))(2of(kx))))
Def == & ( kx dom(1of(2of(2of(2of(2of(B))))))
Def == & (
Def == & ( 2of(kx) dom(1of(2of(2of(2of(2of(2of(2of(B))))))))
Def == & (
Def == & ( 2of(kx) dom(1of(2of(2of(2of(2of(2of(2of(A))))))))
Def == & (
Def == & ( deq-member(KindDeq;1of(kx);1of(2of(2of(2of(2of(2of(2of(
Def == & ( deq-member(KindDeq;1of(kx);1of(A)))))))(2of(kx)))) | [ma-frame-compatible] |
Def Feasible(M)
Def == x dom(1of(M)). T=1of(M)(x)  T
Def == & k dom(1of(2of(M))). T=1of(2of(M))(k)  Dec(T)
Def == & a dom(1of(2of(2of(2of(M))))). p=1of(2of(2of(2of(M))))(a) 
Def == & s:State(1of(M)). Dec( v:1of(2of(M))(locl(a))?Top. p(s,v))
Def == & kx dom(1of(2of(2of(2of(2of(M)))))).
Def == ef=1of(2of(2of(2of(2of(M)))))(kx)  M.frame(1of(kx) affects 2of(kx))
Def == & kl dom(1of(2of(2of(2of(2of(2of(M))))))).
Def == & snd=1of(2of(2of(2of(2of(2of(M))))))(kl)  tg:Id.
Def == & (tg map( p.1of(p);snd))  M.sframe(1of(kl) sends <2of(kl),tg>) | [ma-feasible] |
Def x dom(f). v=f(x)  P(x;v) == x:A. x dom(f)  P(x;f(x)) | [fpf-all] |
Def f || g == x:A. x dom(f) & x dom(g)  f(x) = g(x) B(x) | [fpf-compatible] |