| | Some definitions of interest. |
|
| deq | Def EqDecider(T) == eq:T T    x,y:T. x = y  (eq(x,y)) |
| | | Thm* T:Type. EqDecider(T) Type |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| l_all | Def ( x L.P(x)) == x:T. (x L)  P(x) |
| | | Thm* T:Type, L:T List, P:(T Prop). ( x L.P(x)) Prop |