| | Some definitions of interest. |
|
| deq | Def EqDecider(T) == eq:T T    x,y:T. x = y  (eq(x,y)) |
| | | Thm* T:Type. EqDecider(T) Type |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| bor | Def p  q == if p true else q fi |
| | | Thm* p,q: . (p  q)  |
|
| eqof | Def eqof(d) == 1of(d) |
| | | Thm* T:Type, d:EqDecider(T). eqof(d) T T   |