Definitions mb event system 5 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
event_systemDef ES
Def == E:Type
Def == EqDecider(E)(T:IdIdType
Def == EqDecider(E)(V:IdIdType
Def == EqDecider(E)(M:IdLnkIdType
Def == EqDecider(E)(Top(loc:EId
Def == EqDecider(E)(Top(kind:EKnd
Def == EqDecider(E)(Top(val:(e:Eeventtype(kind;loc;V;M;e))
Def == EqDecider(E)(Top(when:(x:Ide:ET(loc(e),x))
Def == EqDecider(E)(Top(after:(x:Ide:ET(loc(e),x))
Def == EqDecider(E)(Top(sends:(l:IdLnkE(Msg_sub(lM) List))
Def == EqDecider(E)(Top(sender:{e:Eisrcv(kind(e)) }E
Def == EqDecider(E)(Top(index:(e:{e:Eisrcv(kind(e)) }||sends
Def == EqDecider(E)(Top(index:(e:{e:Eisrcv(kind(e)) }||(lnk(kind(e))
Def == EqDecider(E)(Top(index:(e:{e:Eisrcv(kind(e)) }||,sender(e))||)
Def == EqDecider(E)(Top(first:E
Def == EqDecider(E)(Top(pred:{e':E(first(e')) }E
Def == EqDecider(E)(Top(causl:EEProp
Def == EqDecider(E)(Top(ESAxioms{i:l}
Def == EqDecider(E)(Top(ESAxioms(E;
Def == EqDecider(E)(Top(ESAxioms(T;
Def == EqDecider(E)(Top(ESAxioms(M;
Def == EqDecider(E)(Top(ESAxioms(loc;
Def == EqDecider(E)(Top(ESAxioms(kind;
Def == EqDecider(E)(Top(ESAxioms(val;
Def == EqDecider(E)(Top(ESAxioms(when;
Def == EqDecider(E)(Top(ESAxioms(after;
Def == EqDecider(E)(Top(ESAxioms(sends;
Def == EqDecider(E)(Top(ESAxioms(sender;
Def == EqDecider(E)(Top(ESAxioms(index;
Def == EqDecider(E)(Top(ESAxioms(first;
Def == EqDecider(E)(Top(ESAxioms(pred;
Def == EqDecider(E)(Top(ESAxioms(causl)
Def == EqDecider(E)(Top(Top))
Thm* ES  Type{i'}
ESAxiomsDef ESAxioms{i:l}
Def ESAxioms(E;
Def ESAxioms(T;
Def ESAxioms(M;
Def ESAxioms(loc;
Def ESAxioms(kind;
Def ESAxioms(val;
Def ESAxioms(when;
Def ESAxioms(after;
Def ESAxioms(sends;
Def ESAxioms(sender;
Def ESAxioms(index;
Def ESAxioms(first;
Def ESAxioms(pred;
Def ESAxioms(causl)
Def == (e,e':Eloc(e) = loc(e' Id  causl(e,e' e = e'  causl(e',e))
Def == & (e:E(first(e))  (e':Eloc(e') = loc(e Id  causl(e',e)))
Def == & (e:E
Def == & ((first(e))
Def == & (
Def == & (loc(pred(e)) = loc(e Id & causl(pred(e),e)
Def == & (& (e':E
Def == & (& (loc(e') = loc(e Id  (causl(pred(e),e') & causl(e',e))))
Def == & (e:E
Def == & ((first(e))  (x:Id. when(x,e) = after(x,pred(e))  T(loc(e),x)))
Def == & (Trans e,e':Ecausl(e,e'))
Def == & SWellFounded(causl(e,e'))
Def == & (e:E
Def == & (isrcv(kind(e))
Def == & (
Def == & ((sends(lnk(kind(e)),sender(e)))[(index(e))]
Def == & (=
Def == & (msg(lnk(kind(e));tag(kind(e));val(e))
Def == & ( Msg(M))
Def == & (e:Eisrcv(kind(e))  causl(sender(e),e))
Def == & (e,e':E.
Def == & (causl(e,e')
Def == & (
Def == & ((first(e')) & causl(e,pred(e'))  e = pred(e')
Def == & ( isrcv(kind(e')) & causl(e,sender(e'))  e = sender(e'))
Def == & (e:Eisrcv(kind(e))  loc(e) = destination(lnk(kind(e))))
Def == & (e:El:IdLnk.
Def == & (loc(e) = source(l sends(l,e) = nil  Msg_sub(lM) List)
Def == & (e,e':E.
Def == & (isrcv(kind(e))
Def == & (
Def == & (isrcv(kind(e'))
Def == & (
Def == & (lnk(kind(e)) = lnk(kind(e'))
Def == & (
Def == & ((causl(e,e')
Def == & ((
Def == & ((causl(sender(e),sender(e'))
Def == & (( sender(e) = sender(e' E & index(e)<index(e')))
Def == & (e:El:IdLnk, n:||sends(l,e)||.
Def == & (e':E
Def == & (isrcv(kind(e')) & lnk(kind(e')) = l & sender(e') = e & index(e') = n)
Thm* E:Type{i}, T,V:(IdIdType{i}), M:(IdLnkIdType{i}), loc:(EId),
Thm* kind:(EKnd), val:(e:Eeventtype(kind;loc;V;M;e)),
Thm* when,after:(x:Ide:ET(loc(e),x)),
Thm* sends:(l:IdLnkE(Msg_sub(lM) List)),
Thm* sender:({e:E| isrcv(kind(e)) }E),
Thm* index:(e:{e:E| isrcv(kind(e)) }||sends(lnk(kind(e)),sender(e))||),
Thm* first:(E), pred:({e':Efirst(e') }E), causl:(EEProp{i}).
Thm* ESAxioms{i:l}
Thm* ESAxioms(E;
Thm* ESAxioms(T;
Thm* ESAxioms(M;
Thm* ESAxioms(loc;
Thm* ESAxioms(kind;
Thm* ESAxioms(val;
Thm* ESAxioms(when;
Thm* ESAxioms(after;
Thm* ESAxioms(sends;
Thm* ESAxioms(sender;
Thm* ESAxioms(index;
Thm* ESAxioms(first;
Thm* ESAxioms(pred;
Thm* ESAxioms(causl)
Thm*  Prop{i'}
eventtypeDef eventtype(k;loc;V;M;e) == kindcase(k(e);a.V(loc(e),a);l,t.M(l,t))
Thm* E:Type, V:(IdIdType), M:(IdLnkIdType), loc:(EId), k:(EKnd),
Thm* e:E. eventtype(k;loc;V;M;e Type
fair-fifoDef FairFifo
Def == (i:Id, t:l:IdLnk. source(l) = i  onlnk(l;m(i;t)) = nil  Msg List)
Def == & (i:Id, t:.
Def == & (isnull(a(i;t))
Def == & (
Def == & ((x:Id. s(i;t+1).x = s(i;t).x  vartype(i;x))
Def == & (& m(i;t) = nil  Msg List)
Def == & (i:Id, t:l:IdLnk.
Def == & (isrcv(l;a(i;t))
Def == & (
Def == & (destination(l) = i
Def == & (& ||queue(l;t)||1 & hd(queue(l;t)) = msg(a(i;t))  Msg)
Def == & (l:IdLnk, t:.
Def == & (t':
Def == & (tt' & isrcv(l;a(destination(l);t'))  queue(l;t') = nil  Msg List)
w-esDef ES(the_w;p)
Def == <E
Def == ,product-deq(Id;;IdDeq;NatDeq)
Def == ,(i,x. vartype(i;x))
Def == ,(i,a. V(i;locl(a)))
Def == ,the_w.M
Def == ,
Def == ,(e.loc(e))
Def == ,(e.kind(e))
Def == ,(e.val(e))
Def == ,(x,e. (x when e))
Def == ,(x,e. (x after e))
Def == ,(l,e. sends(l;e))
Def == ,(e.sender(e))
Def == ,(e.index(e))
Def == ,(e.first(e))
Def == ,(e.pred(e))
Def == ,(e,e'e <c e')
Def == ,world_DASH_event_DASH_system{1:l, i:l}(the_w,p)
Def == ,>
loclDef locl(a) == inr(a)
Thm* a:Id. locl(a Knd
w-causlDef e <c e' == e e,e'e <loc e'  isrcv(kind(e')) & e = sender(e' E^+ e'
w-EDef E == {p:(Id)| isnull(a(1of(p);2of(p))) }
w-MDef w.M == 1of(2of(2of(w)))
w-VDef V(i;k) == kindcase(k;a.1of(2of(w))(i,a);l,tg.1of(2of(2of(w)))(l,tg))
w-afterDef (x after e) == s(1of(e);2of(e)+1).x
w-indexDef index(e)
Def == ||rcvs(lnk(kind(e));time(e))||-||snds(lnk(kind(e));time(sender(e)))||
w-senderDef sender(e) == <source(lnk(kind(e))),mu(t.match(lnk(kind(e));t;time(e)))>
w-ekindDef kind(e) == kind(act(e))
w-evalDef val(e) == val(act(e))
w-firstDef first(e)
Def == if time(e)=0 true
Def == i; isnull(a(loc(e);time(e)-1)) first(<loc(e),time(e)-1>)
Def == else false fi
Def (recursive)
w-predDef pred(e)
Def == if isnull(a(loc(e);time(e)-1)) pred(<loc(e),time(e)-1>)
Def == else <loc(e),time(e)-1> fi
Def (recursive)
w-sendsDef sends(l;e) == onlnk(l;m(loc(e);time(e)))
w-locDef loc(e) == 1of(e)
w-vartypeDef vartype(i;x) == w.T(i,x)
w-whenDef (x when e) == s(1of(e);2of(e)).x
worldDef World
Def == T:IdIdType
Def == TA:IdIdType
Def == M:IdLnkIdType
Def == (i:Id(x:IdT(i,x)))(i:Idaction(w-action-dec(TA;M;i)))
Def == (i:Id({m:Msg(M)| source(mlnk(m)) = i } List))Top
Thm* World  Type{i'}

About:
pairproductproductlistnilboolbfalsebtrue
ifthenelseassertitintnatural_numberaddsubtractless_thaninr
setlambdaapplyfunctionrecursive_def_notice
universeequalmembertoppropimpliesandorall
exists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 5 Sections EventSystems Doc