| | Some definitions of interest. |
|
| Kind-deq | Def KindDeq == union-deq(IdLnk Id;Id;product-deq(IdLnk;Id;IdLnkDeq;IdDeq);IdDeq) |
|
| ma-state | Def State(ds) == x:Id ds(x)?Top |
|
| Id | Def Id == Atom  |
| | | Thm* Id Type |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| eqof | Def eqof(d) == 1of(d) |
| | | Thm* T:Type, d:EqDecider(T). eqof(d) T T   |
|
| fpf | Def a:A fp-> B(a) == d:A List a:{a:A| (a d) } B(a) |
| | | Thm* A:Type, B:(A Type). a:A fp-> B(a) Type |
|
| iff | Def P  Q == (P  Q) & (P  Q) |
| | | Thm* A,B:Prop. (A  B) Prop |
|
| l_member | Def (x l) == i: . i<||l|| & x = l[i] T |
| | | Thm* T:Type, x:T, l:T List. (x l) Prop |
|
| locl | Def locl(a) == inr(a) |
| | | Thm* a:Id. locl(a) Knd |
|
| not | Def A == A  False |
| | | Thm* A:Prop. ( A) Prop |
|
| subtype | Def S T == x:S. x T |
|
| top | Def Top == Void given Void |
| | | Thm* Top Type |