| | Some definitions of interest. |
|
| Id | Def Id == Atom  |
| | | Thm* Id Type |
|
| bor | Def p  q == if p true else q fi |
| | | Thm* p,q: . (p  q)  |
|
| deq | Def EqDecider(T) == eq:T T    x,y:T. x = y  (eq(x,y)) |
| | | Thm* T:Type. EqDecider(T) Type |
|
| eqof | Def eqof(d) == 1of(d) |
| | | Thm* T:Type, d:EqDecider(T). eqof(d) T T   |
|
| id-deq | Def IdDeq == product-deq(Atom; ;AtomDeq;NatDeq) |
|
| top | Def Top == Void given Void |
| | | Thm* Top Type |