Definitions mb event system 5 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
ma-subDef M1  M2
Def == 1of(M1 1of(M2) & 1of(2of(M1))  1of(2of(M2))
Def == & 1of(2of(2of(M1)))  1of(2of(2of(M2)))
Def == & & 1of(2of(2of(2of(M1))))  1of(2of(2of(2of(M2))))
Def == & & 1of(2of(2of(2of(2of(M1)))))  1of(2of(2of(2of(2of(M2)))))
Def == & & 1of(2of(2of(2of(2of(2of(M1))))))  1of(2of(2of(2of(2of(2of(M2))))))
Def == & & 1of(2of(2of(2of(2of(2of(2of(M1)))))))  1of(2of(2of(2of(2of(2of(2of(
Def == & & 1of(2of(2of(2of(2of(2of(2of(M1)))))))  1of(M2)))))))
Def == & & 1of(2of(2of(2of(2of(2of(2of(2of(
Def == & & 1of(M1))))))))  1of(2of(2of(2of(2of(2of(2of(2of(M2))))))))
msgaDef MsgA
Def == ds:x:Id fp-> Type
Def == da:a:Knd fp-> Type
Def == x:Id fp-> ds(x)?Voida:Id fp-> State(ds)ma-valtype(da; locl(a))Prop
Def == kx:KndId fp-> State(ds)ma-valtype(da; 1of(kx))ds(2of(kx))?Void
Def == kl:KndIdLnk fp-> (tg:Id
Def == kl:KndIdLnk fp-> (State(ds)ma-valtype(da; 1of(kl))
Def == kl:KndIdLnk fp-> ((da(rcv(2of(kl); tg))?Void List)) List
Def == x:Id fp-> Knd Listltg:IdLnkId fp-> Knd ListTop
Thm* MsgA  Type{i'}
KndDef Knd == (IdLnkId)+Id
Thm* Knd  Type
deqDef EqDecider(T) == eq:TTx,y:Tx = y  (eq(x,y))
Thm* T:Type. EqDecider(T Type
fpfDef a:A fp-> B(a) == d:A Lista:{a:A| (a  d) }B(a)
Thm* A:Type, B:(AType). a:A fp-> B(a Type
ma-daDef M.da(a) == 1of(2of(M))(a)?Top
fpf-capDef f(x)?z == if x  dom(f) f(x) else z fi
fpf-subDef f  g == x:Ax  dom(f x  dom(g) & f(x) = g(x B(x)
topDef Top == Void given Void
Thm* Top  Type

About:
productproductlistboolifthenelsevoidunionsetisect
applyfunctionuniverseequalmembertoppropimpliesandall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 5 Sections EventSystems Doc