| Some definitions of interest. |
|
ma-sub | Def M1 M2
Def == 1of(M1) 1of(M2) & 1of(2of(M1)) 1of(2of(M2))
Def == & 1of(2of(2of(M1))) 1of(2of(2of(M2)))
Def == & & 1of(2of(2of(2of(M1)))) 1of(2of(2of(2of(M2))))
Def == & & 1of(2of(2of(2of(2of(M1))))) 1of(2of(2of(2of(2of(M2)))))
Def == & & 1of(2of(2of(2of(2of(2of(M1)))))) 1of(2of(2of(2of(2of(2of(M2))))))
Def == & & 1of(2of(2of(2of(2of(2of(2of(M1))))))) 1of(2of(2of(2of(2of(2of(2of(
Def == & & 1of(2of(2of(2of(2of(2of(2of(M1))))))) 1of(M2)))))))
Def == & & 1of(2of(2of(2of(2of(2of(2of(2of(
Def == & & 1of(M1)))))))) 1of(2of(2of(2of(2of(2of(2of(2of(M2)))))))) |
|
msga | Def MsgA
Def == ds:x:Id fp-> Type
Def == da:a:Knd fp-> Type
Def == x:Id fp-> ds(x)?Void a:Id fp-> State(ds) ma-valtype(da; locl(a)) Prop
Def == kx:Knd Id fp-> State(ds) ma-valtype(da; 1of(kx)) ds(2of(kx))?Void
Def == kl:Knd IdLnk fp-> (tg:Id
Def == kl:Knd IdLnk fp-> ( State(ds) ma-valtype(da; 1of(kl))
Def == kl:Knd IdLnk fp-> ((da(rcv(2of(kl); tg))?Void List)) List
Def == x:Id fp-> Knd List ltg:IdLnk Id fp-> Knd List Top |
| | Thm* MsgA Type{i'} |
|
Knd | Def Knd == (IdLnk Id)+Id |
| | Thm* Knd Type |
|
deq | Def EqDecider(T) == eq:T T    x,y:T. x = y  (eq(x,y)) |
| | Thm* T:Type. EqDecider(T) Type |
|
fpf | Def a:A fp-> B(a) == d:A List a:{a:A| (a d) } B(a) |
| | Thm* A:Type, B:(A Type). a:A fp-> B(a) Type |
|
ma-da | Def M.da(a) == 1of(2of(M))(a)?Top |
|
fpf-cap | Def f(x)?z == if x dom(f) f(x) else z fi |
|
fpf-sub | Def f g == x:A. x dom(f)  x dom(g) & f(x) = g(x) B(x) |
|
top | Def Top == Void given Void |
| | Thm* Top Type |