Definitions mb event system 5 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
Kind-deqDef KindDeq == union-deq(IdLnkId;Id;product-deq(IdLnk;Id;IdLnkDeq;IdDeq);IdDeq)
KndDef Knd == (IdLnkId)+Id
Thm* Knd  Type
IdLnkDef IdLnk == IdId
Thm* IdLnk  Type
idlnk-deqDef IdLnkDeq == product-deq(Id;Id;IdDeq;product-deq(Id;;IdDeq;NatDeq))
ma-stateDef State(ds) == x:Idds(x)?Top
IdDef Id == Atom
Thm* Id  Type
fpf-subDef f  g == x:Ax  dom(f x  dom(g) & f(x) = g(x B(x)
id-deqDef IdDeq == product-deq(Atom;;AtomDeq;NatDeq)
product-deqDef product-deq(A;B;a;b) == <proddeq(a;b),prod-deq(A;B;a;b)>
assertDef b == if b True else False fi
Thm* b:b  Prop
fpfDef a:A fp-> B(a) == d:A Lista:{a:A| (a  d) }B(a)
Thm* A:Type, B:(AType). a:A fp-> B(a Type
fpf-capDef f(x)?z == if x  dom(f) f(x) else z fi
fpf-apDef f(x) == 2of(f)(x)
fpf-domDef x  dom(f) == deq-member(eq;x;1of(f))
loclDef locl(a) == inr(a)
Thm* a:Id. locl(a Knd
pi1Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p A
pi2Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p B(1of(p))
rcvDef rcv(ltg) == inl(<l,tg>)
Thm* l:IdLnk, tg:Id. rcv(ltg Knd
topDef Top == Void given Void
Thm* Top  Type

About:
pairspreadspreadproductproductlistboolifthenelseassertvoid
atomunioninlinrsetisectapplyfunction
universeequalmembertoppropimpliesfalsetrueall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 5 Sections EventSystems Doc