| | Some definitions of interest. |
|
| msga | Def MsgA
Def == ds:x:Id fp-> Type
Def == da:a:Knd fp-> Type
Def == x:Id fp-> ds(x)?Void a:Id fp-> State(ds) ma-valtype(da; locl(a)) Prop
Def == kx:Knd Id fp-> State(ds) ma-valtype(da; 1of(kx)) ds(2of(kx))?Void
Def == kl:Knd IdLnk fp-> (tg:Id
Def == kl:Knd IdLnk fp-> ( State(ds) ma-valtype(da; 1of(kl))
Def == kl:Knd IdLnk fp-> ((da(rcv(2of(kl); tg))?Void List)) List
Def == x:Id fp-> Knd List ltg:IdLnk Id fp-> Knd List Top |
| | | Thm* MsgA Type{i'} |
|
| ma-state | Def State(ds) == x:Id ds(x)?Top |
|
| Id | Def Id == Atom  |
| | | Thm* Id Type |
|
| fpf | Def a:A fp-> B(a) == d:A List a:{a:A| (a d) } B(a) |
| | | Thm* A:Type, B:(A Type). a:A fp-> B(a) Type |
|
| fpf-cap | Def f(x)?z == if x dom(f) f(x) else z fi |
|
| id-deq | Def IdDeq == product-deq(Atom; ;AtomDeq;NatDeq) |
|
| ma-single-pre-init | Def (with ds: ds
Def (init: init
Def action a:T
Def aprecondition a(v) is
Def aP)
Def == mk-ma(ds; locl(a) : T; init; a : P; ; ; ; ) |