| Some definitions of interest. |
|
l_all | Def ( x L.P(x)) == x:T. (x L)  P(x) |
| | Thm* T:Type, L:T List, P:(T Prop). ( x L.P(x)) Prop |
|
ma-compat | Def A ||+ B == A || B & ma-frame-compatible(A; B) & ma-sframe-compatible(A; B) |
|
ma-join-list | Def (L) == reduce( A,B. A B;;L) |
|
msga | Def MsgA
Def == ds:x:Id fp-> Type
Def == da:a:Knd fp-> Type
Def == x:Id fp-> ds(x)?Void a:Id fp-> State(ds) ma-valtype(da; locl(a)) Prop
Def == kx:Knd Id fp-> State(ds) ma-valtype(da; 1of(kx)) ds(2of(kx))?Void
Def == kl:Knd IdLnk fp-> (tg:Id
Def == kl:Knd IdLnk fp-> ( State(ds) ma-valtype(da; 1of(kl))
Def == kl:Knd IdLnk fp-> ((da(rcv(2of(kl); tg))?Void List)) List
Def == x:Id fp-> Knd List ltg:IdLnk Id fp-> Knd List Top |
| | Thm* MsgA Type{i'} |
|
pairwise | Def ( x,y L.P(x;y)) == i: ||L||, j: i. P(L[j];L[i]) |
| | Thm* T:Type{i}, L:T List, P:(T T Prop{i'}). ( x,y L.P(x,y)) Prop{i'} |