Definitions mb event system 6 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
ma-feasibleDef Feasible(M)
Def == xdom(1of(M)). T=1of(M)(x  T
Def == kdom(1of(2of(M))). T=1of(2of(M))(k  Dec(T)
Def == adom(1of(2of(2of(2of(M))))). p=1of(2of(2of(2of(M))))(a 
Def == &s:State(1of(M)). Dec(v:1of(2of(M))(locl(a))?Top. p(s,v))
Def == kxdom(1of(2of(2of(2of(2of(M)))))). 
Def == ef=1of(2of(2of(2of(2of(M)))))(kx  M.frame(1of(kx) affects 2of(kx))
Def == kldom(1of(2of(2of(2of(2of(2of(M))))))). 
Def == & snd=1of(2of(2of(2of(2of(2of(M))))))(kl  tg:Id. 
Def == & (tg  map(p.1of(p);snd))  M.sframe(1of(kl) sends <2of(kl),tg>)
ma-valtypeDef ma-valtype(dak) == da(k)?Top
Kind-deqDef KindDeq == union-deq(IdLnkId;Id;product-deq(IdLnk;Id;IdLnkDeq;IdDeq);IdDeq)
KndDef Knd == (IdLnkId)+Id
Thm* Knd  Type
ma-stateDef State(ds) == x:Idds(x)?Top
IdDef Id == Atom
Thm* Id  Type
deqDef EqDecider(T) == eq:TTx,y:Tx = y  (eq(x,y))
Thm* T:Type. EqDecider(T Type
fpf-allDef xdom(f). v=f(x  P(x;v) == x:Ax  dom(f P(x;f(x))
id-deqDef IdDeq == product-deq(Atom;;AtomDeq;NatDeq)
assertDef b == if b True else False fi
Thm* b:b  Prop
fpf-capDef f(x)?z == if x  dom(f) f(x) else z fi
deq-memberDef deq-member(eq;x;L) == reduce(a,b. eqof(eq)(a,x b;false;L)
fpfDef a:A fp-> B(a) == d:A Lista:{a:A| (a  d) }B(a)
Thm* A:Type, B:(AType). a:A fp-> B(a Type
iffDef P  Q == (P  Q) & (P  Q)
Thm* A,B:Prop. (A  B Prop
l_memberDef (x  l) == i:i<||l|| & x = l[i T
Thm* T:Type, x:Tl:T List. (x  l Prop
ma-single-effectDef ma-single-effect(dsdakxf) == mk-ma(dsda; ; ; <k,x> : f; ; ; )

About:
pairproductproductlistboolbfalseifthenelseassertdecidableless_than
atomunionsetlambdaapplyfunctionuniverseequalmembertop
propimpliesandfalsetrueallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 6 Sections EventSystems Doc