Definitions mb event system 6 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
ma-feasibleDef Feasible(M)
Def == xdom(1of(M)). T=1of(M)(x  T
Def == kdom(1of(2of(M))). T=1of(2of(M))(k  Dec(T)
Def == adom(1of(2of(2of(2of(M))))). p=1of(2of(2of(2of(M))))(a 
Def == &s:State(1of(M)). Dec(v:1of(2of(M))(locl(a))?Top. p(s,v))
Def == kxdom(1of(2of(2of(2of(2of(M)))))). 
Def == ef=1of(2of(2of(2of(2of(M)))))(kx  M.frame(1of(kx) affects 2of(kx))
Def == kldom(1of(2of(2of(2of(2of(2of(M))))))). 
Def == & snd=1of(2of(2of(2of(2of(2of(M))))))(kl  tg:Id. 
Def == & (tg  map(p.1of(p);snd))  M.sframe(1of(kl) sends <2of(kl),tg>)
ma-valtypeDef ma-valtype(dak) == da(k)?Top
Kind-deqDef KindDeq == union-deq(IdLnkId;Id;product-deq(IdLnk;Id;IdLnkDeq;IdDeq);IdDeq)
KndDef Knd == (IdLnkId)+Id
Thm* Knd  Type
ma-stateDef State(ds) == x:Idds(x)?Top
IdDef Id == Atom
Thm* Id  Type
fpfDef a:A fp-> B(a) == d:A Lista:{a:A| (a  d) }B(a)
Thm* A:Type, B:(AType). a:A fp-> B(a Type
fpf-allDef xdom(f). v=f(x  P(x;v) == x:Ax  dom(f P(x;f(x))
fpf-capDef f(x)?z == if x  dom(f) f(x) else z fi
ma-single-effect0Def ma-single-effect0(x;A;k;T;f)
Def == ma-single-effect(x : Ak : Tkx; (s,vf(s(x),v)))
ma-single-effectDef ma-single-effect(dsdakxf) == mk-ma(dsda; ; ; <k,x> : f; ; ; )
fpf-singleDef x : v == <[x],x.v>
id-deqDef IdDeq == product-deq(Atom;;AtomDeq;NatDeq)

About:
pairproductproductlistconsnilifthenelse
decidableatomunionsetlambdaapplyfunctionuniverse
membertopimpliesandallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 6 Sections EventSystems Doc