| Some definitions of interest. |
|
d-feasible | Def d-feasible(D)
Def == ( i:Id. Feasible(M(i)))
Def == & ( l:IdLnk, tg:Id.
Def == & (M(source(l)).dout(l,tg) r M(destination(l)).din(l,tg))
Def == & ( i:Id.
Def == & (finite-type({l:IdLnk
Def == & (finite-type({| destination(l) = i & M(source(l)) sends on link l })) |
|
dsys | Def Dsys == Id MsgA |
| | Thm* Dsys Type{i'} |
|
interface-check | Def interface-check(D;l;tg;T) == T r M(destination(l)).din(l,tg) |
|
ma-din | Def M.din(l,tg) == 1of(2of(M))(rcv(l; tg))?Top |
|
ma-dout | Def M.dout(l,tg) == 1of(2of(M))(rcv(l; tg))?Void |
|
ma-feasible | Def Feasible(M)
Def == x dom(1of(M)). T=1of(M)(x)  T
Def == & k dom(1of(2of(M))). T=1of(2of(M))(k)  Dec(T)
Def == & a dom(1of(2of(2of(2of(M))))). p=1of(2of(2of(2of(M))))(a) 
Def == & s:State(1of(M)). Dec( v:1of(2of(M))(locl(a))?Top. p(s,v))
Def == & kx dom(1of(2of(2of(2of(2of(M)))))).
Def == ef=1of(2of(2of(2of(2of(M)))))(kx)  M.frame(1of(kx) affects 2of(kx))
Def == & kl dom(1of(2of(2of(2of(2of(2of(M))))))).
Def == & snd=1of(2of(2of(2of(2of(2of(M))))))(kl)  tg:Id.
Def == & (tg map( p.1of(p);snd))  M.sframe(1of(kl) sends <2of(kl),tg>) |
|
ma-outlinks | Def ma-outlinks(M;i) == da-outlinks(1of(2of(M));i) |
|
IdLnk | Def IdLnk == Id Id  |
| | Thm* IdLnk Type |
|
ma-sends-on | Def M sends on link l
Def == deq-member(IdLnkDeq;l;map( p.
Def == 2of(p);1of(1of(2of(2of(2of(2of(2of(M))))))))) |
|
Id | Def Id == Atom  |
| | Thm* Id Type |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
d-m | Def M(i) == D(i) |
|
finite-type | Def finite-type(T) == n: , f:( n T). Surj( n; T; f) |
|
l_all | Def ( x L.P(x)) == x:T. (x L)  P(x) |
| | Thm* T:Type, L:T List, P:(T Prop). ( x L.P(x)) Prop |
|
l_member | Def (x l) == i: . i<||l|| & x = l[i] T |
| | Thm* T:Type, x:T, l:T List. (x l) Prop |
|
ldst | Def destination(l) == 1of(2of(l)) |
| | Thm* l:IdLnk. destination(l) Id |
|
lsrc | Def source(l) == 1of(l) |
| | Thm* l:IdLnk. source(l) Id |
|
ma-is-empty | Def ma-is-empty(M)
Def == fpf-is-empty(1of(M)) fpf-is-empty(1of(2of(M)))
Def == fpf-is-empty(1of(2of(2of(M)))) fpf-is-empty(1of(2of(2of(2of(M)))))
Def == fpf-is-empty(1of(2of(2of(2of(2of(M))))))
Def == fpf-is-empty(1of(2of(2of(2of(2of(2of(M)))))))
Def == fpf-is-empty(1of(2of(2of(2of(2of(2of(2of(M))))))))
Def == fpf-is-empty(1of(2of(2of(2of(2of(2of(2of(2of(M))))))))) |
|
pi1 | Def 1of(t) == t.1 |
| | Thm* A:Type, B:(A Type), p:(a:A B(a)). 1of(p) A |
|
pi2 | Def 2of(t) == t.2 |
| | Thm* A:Type, B:(A Type), p:(a:A B(a)). 2of(p) B(1of(p)) |