| Some definitions of interest. |
|
d-realizes | Def D
Def realizes es.P(es)
Def == D':Dsys.
Def == D D'  ( w:World, p:FairFifo. PossibleWorld(D';w)  P(ES(w))) |
|
d-sub | Def D1 D2 == i:Id. M(i) M(i) |
|
dsys | Def Dsys == Id MsgA |
| | Thm* Dsys Type{i'} |
|
ma-state | Def State(ds) == x:Id ds(x)?Top |
|
Id | Def Id == Atom  |
| | Thm* Id Type |
|
d-single-pre-init | Def @i (with ds: ds init: init action a:T precondition a(v) is P s v)(j)
Def == if eqof(IdDeq)(j,i)
Def == if (with ds: ds
Def == if (init: init
Def == if action a:T
Def == if aprecondition a(v) is
Def == if aP)
Def == else fi |
|
m-sys-at | Def @i: A(j) == if j = i A else fi |
|
id-deq | Def IdDeq == product-deq(Atom; ;AtomDeq;NatDeq) |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
es-E | Def E == 1of(es) |
|
es-loc | Def loc(e) == 1of(2of(2of(2of(2of(2of(2of(es)))))))(e) |
|
fpf | Def a:A fp-> B(a) == d:A List a:{a:A| (a d) } B(a) |
| | Thm* A:Type, B:(A Type). a:A fp-> B(a) Type |
|
fpf-cap | Def f(x)?z == if x dom(f) f(x) else z fi |
|
fpf-dom | Def x dom(f) == deq-member(eq;x;1of(f)) |
|
ma-single-pre-init | Def (with ds: ds
Def (init: init
Def action a:T
Def aprecondition a(v) is
Def aP)
Def == mk-ma(ds; locl(a) : T; init; a : P; ; ; ; ) |