Definitions mb event system 6 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
d-realizesDef D 
Def realizes es.P(es)
Def == D':Dsys. 
Def == D  D'  (w:World, p:FairFifo. PossibleWorld(D';w P(ES(w)))
d-subDef D1  D2 == i:Id. M(i M(i)
dsysDef Dsys == IdMsgA
Thm* Dsys  Type{i'}
ma-stateDef State(ds) == x:Idds(x)?Top
IdDef Id == Atom
Thm* Id  Type
d-single-pre-initDef @i (with ds: ds init: init action a:T precondition a(v) is P s v)(j)
Def == if eqof(IdDeq)(j,i)
Def == if (with ds: ds
Def == if (init: init
Def == if action a:T
Def == if aprecondition a(v) is
Def == if aP)
Def == else  fi
m-sys-atDef @iA(j) == if j = i A else  fi
id-deqDef IdDeq == product-deq(Atom;;AtomDeq;NatDeq)
assertDef b == if b True else False fi
Thm* b:b  Prop
es-EDef E == 1of(es)
es-locDef loc(e) == 1of(2of(2of(2of(2of(2of(2of(es)))))))(e)
fpfDef a:A fp-> B(a) == d:A Lista:{a:A| (a  d) }B(a)
Thm* A:Type, B:(AType). a:A fp-> B(a Type
fpf-capDef f(x)?z == if x  dom(f) f(x) else z fi
fpf-domDef x  dom(f) == deq-member(eq;x;1of(f))
ma-single-pre-initDef (with ds: ds
Def (init: init
Def action a:T
Def aprecondition a(v) is
Def aP)
Def == mk-ma(ds; locl(a) : Tinita : P; ; ; ; )

About:
productproductlistboolifthenelseassertatomsetapply
functionuniversemembertoppropimpliesfalsetrueall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 6 Sections EventSystems Doc