Definitions mb event system 7 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
ringDef ring(R;in;out)
Def == (i:|R|. 
Def == ((R(source(in(i)))) & (R(destination(out(i))))
Def == (& source(out(i)) = i
Def == (& & destination(in(i)) = i
Def == (& in(destination(out(i))) = out(i IdLnk
Def == (& out(source(in(i))) = in(i IdLnk)
Def == & (i,j:|R|. k:x.destination(out(x))^k(i) = j  Id)
Def == & |R|
Thm* R:(Id), in,out:(|R|IdLnk). ring(R;in;out Prop
IdLnkDef IdLnk == IdId
Thm* IdLnk  Type
rsetDef |R| == {i:Id| (R(i)) }
Thm* R:(Id). |R Type
IdDef Id == Atom
Thm* Id  Type
assertDef b == if b True else False fi
Thm* b:b  Prop
fun_expDef f^n == primrec(n;x.x;i,gf o g)
Thm* T:Type, n:f:(TT). f^n  TT
l_memberDef (x  l) == i:i<||l|| & x = l[i T
Thm* T:Type, x:Tl:T List. (x  l Prop
ldstDef destination(l) == 1of(2of(l))
Thm* l:IdLnk. destination(l Id
lengthDef ||as|| == Case of as; nil  0 ; a.as'  ||as'||+1  (recursive)
Thm* A:Type, l:A List. ||l||  
Thm* ||nil||  
lsrcDef source(l) == 1of(l)
Thm* l:IdLnk. source(l Id
nat_plusDef  == {i:| 0<i }
Thm*   Type

About:
productlistnillist_indbool
ifthenelseassertintnatural_numberaddless_thanatomset
lambdaapplyfunctionrecursive_def_noticeuniverseequal
memberpropandfalsetrueallexists
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 7 Sections EventSystems Doc