| Who Cites bi-tree? |
|
bi-tree | Def bi-tree(T;to;from)
Def == bi-graph(T;to;from)
Def == & ( i,j:|T|.
Def == & ( p:Edge(T) List.
Def == & (lconnects(p;i;j) & ( q:Edge(T) List. lconnects(q;i;j)  q = p))
Def == & ( L:|T| List. i:|T|. (i L))
Def == & |T| |
|
bi-graph-edge | Def Edge(G) == {l:IdLnk| i:|G|. (l from(i)) } |
|
bi-graph | Def bi-graph(G;to;from)
Def == i:|G|.
Def == ( l to(i).destination(l) = i
Def == & (G(source(l)))
Def == & (l from(source(l)))
Def == & (lnk-inv(l) from(i)))
Def == & ( l from(i).source(l) = i
Def == & & (G(destination(l)))
Def == & & (l to(destination(l)))
Def == & & (lnk-inv(l) to(i))) |
|
rset | Def |R| == {i:Id| (R(i)) } |
| | Thm* R:(Id  ). |R| Type |
|
l_all | Def ( x L.P(x)) == x:T. (x L)  P(x) |
| | Thm* T:Type, L:T List, P:(T Prop). ( x L.P(x)) Prop |
|
l_member | Def (x l) == i: . i<||l|| & x = l[i] T |
| | Thm* T:Type, x:T, l:T List. (x l) Prop |
|
lconnects | Def lconnects(p;i;j)
Def == lpath(p)
Def == & (||p|| = 0  i = j Id)
Def == & ( ||p|| = 0  i = source(hd(p)) & j = destination(last(p))) |
| | Thm* p:IdLnk List, i,j:Id. lconnects(p;i;j) Prop |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
lpath | Def lpath(p)
Def == i: (||p||-1).
Def == destination(p[i]) = source(p[(i+1)]) & p[(i+1)] = lnk-inv(p[i]) IdLnk |
| | Thm* p:IdLnk List. lpath(p) Prop |
|
IdLnk | Def IdLnk == Id Id  |
| | Thm* IdLnk Type |
|
Id | Def Id == Atom  |
| | Thm* Id Type |
|
last | Def last(L) == L[(||L||-1)] |
| | Thm* T:Type, L:T List. null(L)  last(L) T |
|
select | Def l[i] == hd(nth_tl(i;l)) |
| | Thm* A:Type, l:A List, n: . 0 n  n<||l||  l[n] A |
|
length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
| | Thm* A:Type, l:A List. ||l||  |
| | Thm* ||nil||  |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
ldst | Def destination(l) == 1of(2of(l)) |
| | Thm* l:IdLnk. destination(l) Id |
|
hd | Def hd(l) == Case of l; nil "?" ; h.t h |
| | Thm* A:Type, l:A List. ||l|| 1  hd(l) A |
|
lsrc | Def source(l) == 1of(l) |
| | Thm* l:IdLnk. source(l) Id |
|
int_seg | Def {i..j } == {k: | i k < j } |
| | Thm* m,n: . {m..n } Type |
|
lelt | Def i j < k == i j & j<k |
|
le | Def A B == B<A |
| | Thm* i,j: . (i j) Prop |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |
|
lnk-inv | Def lnk-inv(l) == <1of(2of(l)),1of(l),2of(2of(l))> |
|
nth_tl | Def nth_tl(n;as) == if n 0 as else nth_tl(n-1;tl(as)) fi (recursive) |
| | Thm* A:Type, as:A List, i: . nth_tl(i;as) A List |
|
pi2 | Def 2of(t) == t.2 |
| | Thm* A:Type, B:(A Type), p:(a:A B(a)). 2of(p) B(1of(p)) |
|
pi1 | Def 1of(t) == t.1 |
| | Thm* A:Type, B:(A Type), p:(a:A B(a)). 1of(p) A |
|
tl | Def tl(l) == Case of l; nil nil ; h.t t |
| | Thm* A:Type, l:A List. tl(l) A List |
|
le_int | Def i j ==  j< i |
| | Thm* i,j: . (i j)  |
|
lt_int | Def i< j == if i<j true ; false fi |
| | Thm* i,j: . (i< j)  |
|
bnot | Def  b == if b false else true fi |
| | Thm* b: .  b  |