| Who Cites spanner? |
|
spanner | Def spanner(f;T;to;from)
Def == ( l:Edge(T). f(l) =  f(inverse(l)))
Def == & ( i:|T|, l1,l2:Edge(T).
Def == & ((l1 to(i))
Def == & (
Def == & ((l2 to(i))  l1 = l2 IdLnk  (f(l1)) (f(l2))) |
| | Thm* T:(Id  ), to,from:(|T| (IdLnk List)), f:(Edge(T)  ).
Thm* bi-graph(T;to;from)  spanner(f;T;to;from) Prop |
|
bi-graph-edge | Def Edge(G) == {l:IdLnk| i:|G|. (l from(i)) } |
|
rset | Def |R| == {i:Id| (R(i)) } |
| | Thm* R:(Id  ). |R| Type |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
IdLnk | Def IdLnk == Id Id  |
| | Thm* IdLnk Type |
|
l_member | Def (x l) == i: . i<||l|| & x = l[i] T |
| | Thm* T:Type, x:T, l:T List. (x l) Prop |
|
Id | Def Id == Atom  |
| | Thm* Id Type |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
le | Def A B == B<A |
| | Thm* i,j: . (i j) Prop |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |
|
bi-graph-to | Def to(i) == to(i) |
|
bi-graph-inv | Def inverse(l) == lnk-inv(l) |
|
select | Def l[i] == hd(nth_tl(i;l)) |
| | Thm* A:Type, l:A List, n: . 0 n  n<||l||  l[n] A |
|
nth_tl | Def nth_tl(n;as) == if n 0 as else nth_tl(n-1;tl(as)) fi (recursive) |
| | Thm* A:Type, as:A List, i: . nth_tl(i;as) A List |
|
le_int | Def i j ==  j< i |
| | Thm* i,j: . (i j)  |
|
bnot | Def  b == if b false else true fi |
| | Thm* b: .  b  |
|
length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
| | Thm* A:Type, l:A List. ||l||  |
| | Thm* ||nil||  |
|
lnk-inv | Def lnk-inv(l) == <1of(2of(l)),1of(l),2of(2of(l))> |
|
hd | Def hd(l) == Case of l; nil "?" ; h.t h |
| | Thm* A:Type, l:A List. ||l|| 1  hd(l) A |
|
pi2 | Def 2of(t) == t.2 |
| | Thm* A:Type, B:(A Type), p:(a:A B(a)). 2of(p) B(1of(p)) |
|
pi1 | Def 1of(t) == t.1 |
| | Thm* A:Type, B:(A Type), p:(a:A B(a)). 1of(p) A |
|
tl | Def tl(l) == Case of l; nil nil ; h.t t |
| | Thm* A:Type, l:A List. tl(l) A List |
|
lt_int | Def i< j == if i<j true ; false fi |
| | Thm* i,j: . (i< j)  |