Rank | Theorem | Name |
5 |
Thm* E:TaggedEventStruct.
(switch_inv(E) Causal(E) AD-normal(E) No-dup-deliver(E)) refines switch-decomposable(E) | [strong_switch_inv_decomposable] |
cites |
1 |
Thm* E:EventStruct, L:|E| List.
L = nil  Causal(E)(L)  ( i: ||L||. is-send(E)(L[i])) | [P_causal_non_nil] |
4 |
Thm* L:T List, P:( ||L|| Prop).
( x: ||L||. Dec(P(x)))  ( i: ||L||. P(i))  ( i: ||L||. P(i) & ( j: ||L||. i < j  P(j))) | [last_with_property] |
0 |
Thm* x,y:T, R:(T T Prop). x = y  (x (R^*) y) | [rel_star_weakening] |
2 |
Thm* E:EventStruct. EquivRel(|E|)(_1 =msg=(E) _2) | [event_msg_eq_equiv] |
1 |
Thm* E:TaggedEventStruct, tr:|E| List, ls: ||tr||.
switch_inv(E)(tr) 
( i,j: ||tr||. (i (switchR(tr)^*) ls)  (j (switchR(tr)^*) ls)  tag(E)(tr[i]) = tag(E)(tr[j])) | [switch_inv_rel_closure] |
1 |
Thm* E:EventStruct, tr:|E| List, ls,i: ||tr||.
is-send(E)(tr[ls])  (i (switchR(tr)^*) ls)  is-send(E)(tr[i]) | [switch_inv_rel_closure_send] |
3 |
Thm* E:EventStruct, tr:|E| List, ls: ||tr||.
is-send(E)(tr[ls]) 
( j: ||tr||. ls < j  is-send(E)(tr[j])) 
( i,j: ||tr||. i j  is-send(E)(tr[j])  (i (switchR(tr)^*) ls)  (j (switchR(tr)^*) ls)) | [switch_inv_rel_closure_lemma1] |
2 |
Thm* R:(T T Prop), x,y,z:T. (x R y)  (y (R^*) z)  (x (R^*) z) | [rel_star_trans] |