mb hybrid Sections GenAutomata Doc

RankTheoremName
5 Thm* E:TaggedEventStruct. (switch_inv(E) Causal(E) AD-normal(E) No-dup-deliver(E)) refines switch-decomposable(E)[strong_switch_inv_decomposable]
cites
1 Thm* E:EventStruct, L:|E| List. L = nil Causal(E)(L) (i:||L||. is-send(E)(L[i]))[P_causal_non_nil]
4 Thm* L:T List, P:(||L||Prop). (x:||L||. Dec(P(x))) (i:||L||. P(i)) (i:||L||. P(i) & (j:||L||. i < j P(j)))[last_with_property]
0 Thm* x,y:T, R:(TTProp). x = y (x (R^*) y)[rel_star_weakening]
2 Thm* E:EventStruct. EquivRel(|E|)(_1 =msg=(E) _2)[event_msg_eq_equiv]
1 Thm* E:TaggedEventStruct, tr:|E| List, ls:||tr||. switch_inv(E)(tr) (i,j:||tr||. (i (switchR(tr)^*) ls) (j (switchR(tr)^*) ls) tag(E)(tr[i]) = tag(E)(tr[j]))[switch_inv_rel_closure]
1 Thm* E:EventStruct, tr:|E| List, ls,i:||tr||. is-send(E)(tr[ls]) (i (switchR(tr)^*) ls) is-send(E)(tr[i])[switch_inv_rel_closure_send]
3 Thm* E:EventStruct, tr:|E| List, ls:||tr||. is-send(E)(tr[ls]) (j:||tr||. ls < j is-send(E)(tr[j])) (i,j:||tr||. ij is-send(E)(tr[j]) (i (switchR(tr)^*) ls) (j (switchR(tr)^*) ls))[switch_inv_rel_closure_lemma1]
2 Thm* R:(TTProp), x,y,z:T. (x R y) (y (R^*) z) (x (R^*) z)[rel_star_trans]

mb hybrid Sections GenAutomata Doc