Theorem | Name |
Thm* E:TaggedEventStruct, tr:|E| List, ls: ||tr||.
switch_inv(E)(tr) 
( i,j: ||tr||. (i (switchR(tr)^*) ls)  (j (switchR(tr)^*) ls)  tag(E)(tr[i]) = tag(E)(tr[j])) | [switch_inv_rel_closure] |
cites |
Thm* R,R2:(T T Prop).
Trans(T)(R2(_1,_2))  ( x,y:T. (x R y)  (x R2 y))  ( x,y:T. (x (R^*) y)  (x R2 y) x = y) | [rel_star_closure] |
Thm* E:TaggedEventStruct, tr:|E| List.
switch_inv(E)(tr)  ( i,j: ||tr||. (i switchR(tr) j)  tag(E)(tr[i]) = tag(E)(tr[j])) | [switch_inv_rel_same_tag] |