| Some definitions of interest. |
|
interleaving | Def interleaving(T;L1;L2;L)
Def == ||L|| = ||L1||+||L2|| & disjoint_sublists(T;L1;L2;L) |
|
disjoint_sublists | Def disjoint_sublists(T;L1;L2;L)
Def == f1:( ||L1||  ||L||), f2:( ||L2||  ||L||).
Def == increasing(f1;||L1||) & ( j: ||L1||. L1[j] = L[(f1(j))] T)
Def == & increasing(f2;||L2||) & ( j: ||L2||. L2[j] = L[(f2(j))] T)
Def == & ( j1: ||L1||, j2: ||L2||. f1(j1) = f2(j2)) |
| | Thm* T:Type, L1,L2,L:T List. disjoint_sublists(T;L1;L2;L) Prop |
|
iff | Def P  Q == (P  Q) & (P  Q) |
| | Thm* A,B:Prop. (A  B) Prop |
|
length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
| | Thm* A:Type, l:A List. ||l||  |
| | Thm* ||nil||  |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |