| Some definitions of interest. |
|
decidable | Def Dec(P) == P P |
| | Thm* A:Prop. Dec(A) Prop |
|
interleaving_occurence | Def interleaving_occurence(T;L1;L2;L;f1;f2)
Def == ||L|| = ||L1||+||L2||
Def == & increasing(f1;||L1||) & ( j: ||L1||. L1[j] = L[(f1(j))] T)
Def == & increasing(f2;||L2||) & ( j: ||L2||. L2[j] = L[(f2(j))] T)
Def == & ( j1: ||L1||, j2: ||L2||. f1(j1) = f2(j2) ) |
| | Thm* T:Type, L1,L2,L:T List, f1:( ||L1||  ||L||), f2:( ||L2||  ||L||).
Thm* interleaving_occurence(T;L1;L2;L;f1;f2) Prop |
|
increasing | Def increasing(f;k) == i: (k-1). f(i)<f(i+1) |
| | Thm* k: , f:( k  ). increasing(f;k) Prop |
|
int_seg | Def {i..j } == {k: | i k < j } |
| | Thm* m,n: . {m..n } Type |
|
length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
| | Thm* A:Type, l:A List. ||l||  |
| | Thm* ||nil||  |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |