| | Some definitions of interest. |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| bnot | Def  b == if b false else true fi |
| | | Thm* b: .  b  |
|
| dec2bool | Def dec2bool(d) == InjCase(d; x. true , false ) |
| | | Thm* d:Decision. dec2bool(d)  |
|
| decidable | Def Dec(P) == P P |
| | | Thm* A:Prop. Dec(A) Prop |
|
| decision | Def Decision == Top+Top |
|
| iff | Def P  Q == (P  Q) & (P  Q) |
| | | Thm* A,B:Prop. (A  B) Prop |
|
| not | Def A == A  False |
| | | Thm* A:Prop. ( A) Prop |