Rank | Theorem | Name |
7 | ![]() ![]() Thm* i+1<||L|| Thm* ![]() ![]() Thm* ( ![]() Thm* (L = (X @ [L[i]; L[(i+1)]] @ Y) Thm* (& swap(L;i;i+1) = (X @ [L[(i+1)]; L[i]] @ Y)) | [swap_adjacent_decomp] |
cites the following: | ||
1 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | [list_extensionality] |
3 | ![]() ![]() ![]() ![]() | [swap_length] |
6 | ![]() ![]() Thm* L2 = swap(L1;i;j) Thm* ![]() ![]() Thm* L2[i] = L1[j] & L2[j] = L1[i] & ||L2|| = ||L1|| ![]() ![]() Thm* & ( ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | [swapped_select] |
0 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() | [select_cons_tl] |
0 | ![]() ![]() ![]() ![]() ![]() ![]() | [length_tl] |
5 | ![]() ![]() Thm* swap([x / L];i;j) = [x / swap(L;i-1;j-1)] | [swap_cons] |
1 | ![]() ![]() | [select_tl] |