mb list 2 Sections MarkB generic Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
RankTheoremName
7Thm* i:L:A List.
Thm* i+1<||L||
Thm* 
Thm* (X,Y:A List.
Thm* (L = (X @ [L[i]; L[(i+1)]] @ Y)
Thm* (& swap(L;i;i+1) = (X @ [L[(i+1)]; L[i]] @ Y))
[swap_adjacent_decomp]
cites the following:
1Thm* a,b:T List. ||a|| = ||b||    (i:i<||a||  a[i] = b[i])  a = b[list_extensionality]
3Thm* L:T List, i,j:||L||. ||swap(L;i;j)|| = ||L||  [swap_length]
6Thm* L1,L2:T List, i,j:||L1||.
Thm* L2 = swap(L1;i;j)
Thm* 
Thm* L2[i] = L1[j] & L2[j] = L1[i] & ||L2|| = ||L1||   & L1 = swap(L2;i;j)
Thm* & (x:||L2||. x = i  x = j  L2[x] = L1[x])
[swapped_select]
0Thm* a:Tas:T List, i:. 0<i  i||as||  [a / as][i] = as[(i-1)][select_cons_tl]
0Thm* l:A List. ||l|| ||tl(l)|| = ||l||-1  [length_tl]
5Thm* L:T List, x:Ti,j:{1..(||L||+1)}.
Thm* swap([x / L];i;j) = [x / swap(L;i-1;j-1)]
[swap_cons]
1Thm* as:A List, n:(||as||-1). tl(as)[n] = as[(n+1)][select_tl]
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
mb list 2 Sections MarkB generic Doc