| Rank | Theorem | Name | 
| 7 |  i:  , L:A List. Thm* i+1<||L|| Thm*    Thm* (  X,Y:A List. Thm* (L = (X @ [L[i]; L[(i+1)]] @ Y) Thm* (& swap(L;i;i+1) = (X @ [L[(i+1)]; L[i]] @ Y)) | [swap_adjacent_decomp] | 
| cites the following: | ||
| 1 |  a,b:T List. ||a|| = ||b||       (  i:  . i<||a||   a[i] = b[i])   a = b | [list_extensionality] | 
| 3 |  L:T List, i,j:  ||L||. ||swap(L;i;j)|| = ||L||    | [swap_length] | 
| 6 |  L1,L2:T List, i,j:  ||L1||. Thm* L2 = swap(L1;i;j) Thm*    Thm* L2[i] = L1[j] & L2[j] = L1[i] & ||L2|| = ||L1||    & L1 = swap(L2;i;j) Thm* & (  x:  ||L2||.  x = i     x = j   L2[x] = L1[x]) | [swapped_select] | 
| 0 |  a:T, as:T List, i:  . 0<i   i  ||as||   [a / as][i] = as[(i-1)] | [select_cons_tl] | 
| 0 |  l:A List. ||l||  1   ||tl(l)|| = ||l||-1    | [length_tl] | 
| 5 |  L:T List, x:T, i,j:{1..(||L||+1)  }. Thm* swap([x / L];i;j) = [x / swap(L;i-1;j-1)] | [swap_cons] | 
| 1 |  as:A List, n:  (||as||-1). tl(as)[n] = as[(n+1)] | [select_tl] |