| Rank | Theorem | Name |
| 7 | Thm* i+1<||L|| Thm* Thm* ( Thm* (L = (X @ [L[i]; L[(i+1)]] @ Y) Thm* (& swap(L;i;i+1) = (X @ [L[(i+1)]; L[i]] @ Y)) | [swap_adjacent_decomp] |
| cites the following: | ||
| 1 | [list_extensionality] | |
| 3 | [swap_length] | |
| 6 | Thm* L2 = swap(L1;i;j) Thm* Thm* L2[i] = L1[j] & L2[j] = L1[i] & ||L2|| = ||L1|| Thm* & ( | [swapped_select] |
| 0 | [select_cons_tl] | |
| 0 | [length_tl] | |
| 5 | Thm* swap([x / L];i;j) = [x / swap(L;i-1;j-1)] | [swap_cons] |
| 1 | [select_tl] |