(27steps total)
PrintForm
Definitions
Lemmas
mb
list
2
Sections
MarkB
generic
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At:
swap
adjacent
decomp
A
:Type,
i
:
,
L
:
A
List.
i
+1<||
L
||
(
X
,
Y
:
A
List.
(
L
= (
X
@ [
L
[
i
];
L
[(
i
+1)]] @
Y
) & swap(
L
;
i
;
i
+1) = (
X
@ [
L
[(
i
+1)];
L
[
i
]] @
Y
))
By:
InductionOnNat
Generated subgoals:
1
1.
A
: Type
L
:
A
List.
0+1<||
L
||
(
X
,
Y
:
A
List.
(
L
= (
X
@ [
L
[0];
L
[(0+1)]] @
Y
) & swap(
L
;0;0+1) = (
X
@ [
L
[(0+1)];
L
[0]] @
Y
))
19
steps
2
1.
A
: Type
2.
i
:
3. 0<
i
4.
L
:
A
List.
4.
i
-1+1<||
L
||
4.
4.
(
X
,
Y
:
A
List.
4. (
L
= (
X
@ [
L
[(
i
-1)];
L
[(
i
-1+1)]] @
Y
)
4. (
& swap(
L
;
i
-1;
i
-1+1) = (
X
@ [
L
[(
i
-1+1)];
L
[(
i
-1)]] @
Y
))
L
:
A
List.
i
+1<||
L
||
(
X
,
Y
:
A
List.
(
L
= (
X
@ [
L
[
i
];
L
[(
i
+1)]] @
Y
) & swap(
L
;
i
;
i
+1) = (
X
@ [
L
[(
i
+1)];
L
[
i
]] @
Y
))
7
steps
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(27steps total)
PrintForm
Definitions
Lemmas
mb
list
2
Sections
MarkB
generic
Doc