By: |
THEN AssertBY (||tl(L)|| = ||L||-1) (RWW Thm* ![]() ![]() ![]() ![]() ![]() ![]() THEN ListDecomp [2;2;1;2] 0 THEN ListDecomp [2;2;2;2;1] 0 THEN InstHyp [tl(L)] 4 |
1 |
6. i+1<||L|| 7. ||tl(L)|| = ||L||-1 ![]() ![]() 8. ![]() 8. tl(L) = (X @ [tl(L)[(i-1)]; tl(L)[(i-1+1)]] @ Y) 8. & swap(tl(L);i-1;i-1+1) = (X @ [tl(L)[(i-1+1)]; tl(L)[(i-1)]] @ Y) ![]() ![]() ![]() ![]() ![]() | 6 steps |
About:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |