IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At:
l before swap1 1. T : Type
2. L : T List
3. i : (||L||-1)
4. a : T 5. b : T 6. f : 2||swap(L;i;i+1)||
7. increasing(f;2)
8. j:2. [a; b][j] = L[((i, i+1)(f(j)))]
9. ||swap(L;i;i+1)|| = ||L||
10. a = L[((i, i+1)(f(0)))]
11. b = L[((i, i+1)(f(1)))]
12. (i, i+1) ||L||||L||
13. (i, i+1)(f(0))<(i, i+1)(f(1))
L[((i, i+1)(f(0)))] = L[(i+1)] & L[((i, i+1)(f(1)))] = L[i]
By:
MoveToConcl -1 THEN Unfold `flip` 0 THEN Reduce 0
THEN
AssertBY (f(0)<f(1))
(AllHyps
((h.
((FwdThru Thm*k:, f:(k). increasing(f;k) (x,y:k. x<yf(x)<f(y))
(([h]
((THEN
((BackThru -1))
THEN
AutoBoolCase (f(0)=i)
THEN
AutoBoolCase (f(1)=i)
THEN
AutoBoolCase (f(0)=i+1)
THEN
AutoBoolCase (f(1)=i+1)
Generated subgoals:
None
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html