Definitions mb nat Sections MarkB generic Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
assertDef b == if b True else False fi
Thm* b:b  Prop
rel_expDef R^n == if n=0 x,yx = y  T else x,yz:T. (x R z) & (z R^n-1 y) fi
Def (recursive)
Thm* n:T:Type, R:(TTProp). R^n  TTProp
eq_intDef i=j == if i=j true ; false fi
Thm* i,j:. (i=j 
natDef  == {i:| 0i }
Thm*   Type
notDef A == A  False
Thm* A:Prop. (A Prop

About:
boolbfalsebtrueifthenelseassertintnatural_numbersubtractint_eq
setlambdafunctionrecursive_def_noticeuniverseequalmember
propimpliesandfalsetrueallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb nat Sections MarkB generic Doc