| Some definitions of interest. |
|
assert | Def b == if b True else False fi |
| | Thm* b:. b Prop |
|
rel_exp | Def R^n == if n=0 x,y. x = y T else x,y. z:T. (x R z) & (z R^n-1 y) fi
Def (recursive) |
| | Thm* n:, T:Type, R:(TTProp). R^n TTProp |
|
eq_int | Def i=j == if i=j true ; false fi |
| | Thm* i,j:. (i=j) |
|
nat | Def == {i:| 0i } |
| | Thm* Type |
|
not | Def A == A False |
| | Thm* A:Prop. (A) Prop |