| Some definitions of interest. |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
rel_exp | Def R^n == if n= 0 x,y. x = y T else x,y. z:T. (x R z) & (z R^n-1 y) fi
Def (recursive) |
| | Thm* n: , T:Type, R:(T T Prop). R^n T T Prop |
|
rel_implies | Def R1 => R2 == x,y:T. (x R1 y)  (x R2 y) |
| | Thm* T:Type, R1,R2:(T T Prop). R1 => R2 Prop |