| Some definitions of interest. |
|
equiv_rel | Def EquivRel x,y:T. E(x;y)
Def == Refl(T;x,y.E(x;y)) & (Sym x,y:T. E(x;y)) & (Trans x,y:T. E(x;y)) |
| | Thm* T:Type, E:(TTProp). (EquivRel x,y:T. E(x,y)) Prop |
|
rel_star | Def (R^*)(x,y) == n:. x R^n y |
| | Thm* T:Type, R:(TTProp). (R^*) TTProp |
|
nat | Def == {i:| 0i } |
| | Thm* Type |
|
rel_exp | Def R^n == if n=0 x,y. x = y T else x,y. z:T. (x R z) & (z R^n-1 y) fi
Def (recursive) |
| | Thm* n:, T:Type, R:(TTProp). R^n TTProp |