Definitions mb nat Sections MarkB generic Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
equiv_relDef EquivRel x,y:TE(x;y)
Def == Refl(T;x,y.E(x;y)) & (Sym x,y:TE(x;y)) & (Trans x,y:TE(x;y))
Thm* T:Type, E:(TTProp). (EquivRel x,y:TE(x,y))  Prop
rel_starDef (R^*)(x,y) == n:x R^n y
Thm* T:Type, R:(TTProp). (R^*)  TTProp
natDef  == {i:| 0i }
Thm*   Type
rel_expDef R^n == if n=0 x,yx = y  T else x,yz:T. (x R z) & (z R^n-1 y) fi
Def (recursive)
Thm* n:T:Type, R:(TTProp). R^n  TTProp

About:
ifthenelseintnatural_numbersubtractsetlambdaapplyfunction
recursive_def_noticeuniverseequalmemberpropandallexists
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb nat Sections MarkB generic Doc