| Some definitions of interest. |
|
fun_exp | Def f^n == primrec(n; x.x; i,g. f o g) |
| | Thm* T:Type, n: , f:(T T). f^n T T |
|
compose | Def (f o g)(x) == f(g(x)) |
| | Thm* A,B,C:Type, f:(B C), g:(A B). f o g A C |
|
int_seg | Def {i..j } == {k: | i k < j } |
| | Thm* m,n: . {m..n } Type |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
primrec | Def primrec(n;b;c) == if n= 0 b else c(n-1,primrec(n-1;b;c)) fi (recursive) |
| | Thm* T:Type, n: , b:T, c:( n T T). primrec(n;b;c) T |