| Some definitions of interest. |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
iff | Def P  Q == (P  Q) & (P  Q) |
| | Thm* A,B:Prop. (A  B) Prop |
|
int_seg | Def {i..j } == {k: | i k < j } |
| | Thm* m,n: . {m..n } Type |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |
|
search | Def search(k;P) == primrec(k;0; i,j. if 0< j j ; P(i) i+1 else 0 fi) |
| | Thm* k: , P:( k  ). search(k;P) (k+1) |
|
primrec | Def primrec(n;b;c) == if n= 0 b else c(n-1,primrec(n-1;b;c)) fi (recursive) |
| | Thm* T:Type, n: , b:T, c:( n T T). primrec(n;b;c) T |
|
rev_implies | Def P  Q == Q  P |
| | Thm* A,B:Prop. (A  B) Prop |