WhoCites Definitions mb structures Sections GenAutomata Doc

Who Cites dequiv?
dequiv Def DecidableEquiv == T:TypeE:TTEquivRel(T)((_1 E _2))Top
Thm* DecidableEquiv Type{i'}
assert Def b == if b True else False fi
Thm* b:. b Prop
carrier Def |S| == 1of(S)
Thm* S:Structure. |S| Type
eq_dequiv Def =(DE) == 1of(2of(DE))
Thm* E:DecidableEquiv. =(E) |E||E|
equiv_rel Def EquivRel x,y:T. E(x;y) == Refl(T;x,y.E(x;y)) & Sym x,y:T. E(x;y) & Trans x,y:T. E(x;y)
Thm* T:Type, E:(TTProp). (EquivRel x,y:T. E(x,y)) Prop
pi1 Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A
top Def Top == Void given Void
Thm* Top Type
pi2 Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p))
trans Def Trans x,y:T. E(x;y) == a,b,c:T. E(a;b) E(b;c) E(a;c)
Thm* T:Type, E:(TTProp). Trans x,y:T. E(x,y) Prop
sym Def Sym x,y:T. E(x;y) == a,b:T. E(a;b) E(b;a)
Thm* T:Type, E:(TTProp). Sym x,y:T. E(x,y) Prop
refl Def Refl(T;x,y.E(x;y)) == a:T. E(a;a)
Thm* T:Type, E:(TTProp). Refl(T;x,y.E(x,y)) Prop

About:
spreadspreadproductproductboolifthenelseassertvoidisectfunction
universemembertoppropimpliesandfalsetrueall!abstraction

WhoCites Definitions mb structures Sections GenAutomata Doc