| Who Cites dequiv? | |
| dequiv |
Def DecidableEquiv == T:Type |
| Thm* DecidableEquiv | |
| assert |
Def |
| Thm* | |
| carrier | Def |S| == 1of(S) |
| Thm* | |
| eq_dequiv | Def =(DE) == 1of(2of(DE)) |
| Thm* | |
| equiv_rel | Def EquivRel x,y:T. E(x;y) == Refl(T;x,y.E(x;y)) & Sym x,y:T. E(x;y) & Trans x,y:T. E(x;y) |
| Thm* | |
| pi1 | Def 1of(t) == t.1 |
| Thm* | |
| top | Def Top == Void given Void |
|
Thm* Top | |
| pi2 | Def 2of(t) == t.2 |
|
Thm* | |
| trans |
Def Trans x,y:T. E(x;y) == |
| Thm* | |
| sym |
Def Sym x,y:T. E(x;y) == |
| Thm* | |
| refl |
Def Refl(T;x,y.E(x;y)) == |
| Thm* |
About: