equiv_rel |
Def EquivRel x,y:T. E(x;y)
== Refl(T;x,y.E(x;y)) & Sym x,y:T. E(x;y) & Trans x,y:T. E(x;y)
Thm* T:Type, E:(T T Prop). (EquivRel x,y:T. E(x,y)) Prop
|
lang_rel |
Def L-induced Equiv(x,y) == z:A*. L(z @ x)  L(z @ y)
Thm* A:Type, L:LangOver(A). L-induced Equiv A* A* Prop
|
languages |
Def LangOver(Alph) == Alph* Prop
Thm* Alph:Type{i}. LangOver(Alph) Type{i'}
|
refl |
Def Refl(T;x,y.E(x;y)) == a:T. E(a;a)
Thm* T:Type, E:(T T Prop). Refl(T;x,y.E(x,y)) Prop
|
sym |
Def Sym x,y:T. E(x;y) == a,b:T. E(a;b)  E(b;a)
Thm* T:Type, E:(T T Prop). Sym x,y:T. E(x,y) Prop
|
trans |
Def Trans x,y:T. E(x;y) == a,b,c:T. E(a;b)  E(b;c)  E(a;c)
Thm* T:Type, E:(T T Prop). Trans x,y:T. E(x,y) Prop
|
append |
Def as @ bs == Case of as; nil bs ; a.as' a.(as' @ bs) (recursive)
Thm* T:Type, as,bs:T*. (as @ bs) T*
|
iff |
Def P  Q == (P  Q) & (P  Q)
Thm* A,B:Prop. (A  B) Prop
|
rev_implies |
Def P  Q == Q  P
Thm* A,B:Prop. (A  B) Prop
|