myhill nerode Sections AutomataTheory Doc

Def Dec(P) == P P

Thm* L:LangOver(Alph). Fin(Alph) Fin(x,y:Alph*//L-induced Equiv(x,y)) & (l:Alph*. Dec(L(l))) (St:Type, Auto:Automata(Alph;St). Fin(St) & L = LangOf(Auto)) mn_31

Thm* n:{1...}, A:Type, L:LangOver(A), R:(A*A*Prop). Fin(A) (EquivRel x,y:A*. x R y) (n ~ (x,y:A*//(x R y))) (x,y,z:A*. (x R y) ((z @ x) R (z @ y))) (g:((x,y:A*//(x R y))). l:A*. L(l) g(l)) (m:. m ~ (x,y:A*//(x L-induced Equiv y))) & (l:A*. Dec(L(l))) mn_23

Thm* R:(Alph*Alph*Prop). Fin(Alph) (EquivRel x,y:Alph*. x R y) Fin(x,y:Alph*//(x R y)) (x,y,z:Alph*. (x R y) ((z @ x) R (z @ y))) (g:((x,y:Alph*//(x R y))), x,y:x,y:Alph*//(x R y). Dec(x Rg y)) mn_23_lem_1

Thm* R:(Alph*Alph*Prop). Fin(Alph) (EquivRel x,y:Alph*. x R y) Fin(x,y:Alph*//(x R y)) (x,y,z:Alph*. (x R y) ((z @ x) R (z @ y))) (g:((x,y:Alph*//(x R y))), x,y:x,y:Alph*//(x R y). Dec(x Rg y)) mn_23_lem

In prior sections: core int 1 bool 1 int 2 finite sets list 3 autom exponent rel 1 quot 1 relation autom det automata