PrintForm Definitions myhill nerode Sections AutomataTheory Doc

At: total back listify 1 1 1

1. Alph: Type
2. S: ActionSet(Alph)
3. sL: S.car*
4. Fin(Alph)
5. Fin(S.car)

TBL:S.car*. (s:S.car. mem_f(S.car;s;TBL) (w:Alph*. mem_f(S.car;(S:ws);sL))) ||TBL|| = 0 & (i:||TBL||, j:i. TBL[i] = TBL[j]) & (s:S.car. mem_f(S.car;s;TBL) (w:Alph*. mem_f(S.car;(S:ws);sL))) & (AL:S.car*. (s:S.car. mem_f(S.car;s;AL) (w:Alph*. mem_f(S.car;(S:ws);sL))) & (s:S.car. mem_f(S.car;s;sL) mem_f(S.car;s;TBL) mem_f(S.car;s;AL)) & (s:S.car, a:Alph. mem_f(S.car;S.act(a,s);TBL) mem_f(S.car;s;TBL) mem_f(S.car;s;AL)))

By:
InstConcl [nil]
THEN
Reduce 0
THEN
Sel 2 (Analyze 0)


Generated subgoal:

1 AL:S.car*. (s:S.car. mem_f(S.car;s;AL) (w:Alph*. mem_f(S.car;(S:ws);sL))) & (s:S.car. mem_f(S.car;s;sL) False mem_f(S.car;s;AL)) & (s:S.car, a:Alph. False False mem_f(S.car;s;AL))


About:
existslistorallandequal
natural_numberimpliesapplyniluniversefalse