At: total back listify 1 2 1 2 2 1
1. Alph: Type
2. S: ActionSet(Alph)
3. sL: S.car*
4. Fin(Alph)
5. n: 
6. f:
n
S.car
7. g: S.car

n
8. InvFuns(
n; S.car; f; g)
9.
n:
.
TBL:S.car*.
(
s:S.car. mem_f(S.car;s;TBL) 
(
w:Alph*. mem_f(S.car;(S:w
s);sL)))
||TBL|| = n
& (
i:
||TBL||, j:
i.
TBL[i] = TBL[j])
& (
s:S.car. mem_f(S.car;s;TBL) 
(
w:Alph*. mem_f(S.car;(S:w
s);sL)))
& (
AL:S.car*.
(
s:S.car. mem_f(S.car;s;AL) 
(
w:Alph*. mem_f(S.car;(S:w
s);sL)))
& (
s:S.car. mem_f(S.car;s;sL) 
mem_f(S.car;s;TBL)
mem_f(S.car;s;AL))
& (
s:S.car, a:Alph. mem_f(S.car;S.act(a,s);TBL) 
mem_f(S.car;s;TBL)
mem_f(S.car;s;AL)))
10.
n = 0
11. TBL: S.car*
12. ||TBL|| = n+1

13.
i:
||TBL||, j:
i.
TBL[i] = TBL[j]
14.
s:S.car. mem_f(S.car;s;TBL) 
(
w:Alph*. mem_f(S.car;(S:w
s);sL))
15. AL: S.car*
16.
s:S.car. mem_f(S.car;s;AL) 
(
w:Alph*. mem_f(S.car;(S:w
s);sL))
17.
s:S.car. mem_f(S.car;s;sL) 
mem_f(S.car;s;TBL)
mem_f(S.car;s;AL)
18.
s:S.car, a:Alph. mem_f(S.car;S.act(a,s);TBL) 
mem_f(S.car;s;TBL)
mem_f(S.car;s;AL)
19. i:
(n+1)
20. j:
i
21. g(TBL[i]) = g(TBL[j])
TBL:S.car*.
s:S.car. mem_f(S.car;s;TBL) 
(
w:Alph*. mem_f(S.car;(S:w
s);sL))
By:
InstHyp [i;j] 13
THEN
Analyze -1
Generated subgoal:1 | TBL[i] = TBL[j] |
About: