NDA_act |
Def n == 1of(n)
Thm* Alph,States:Type, n:NDA(Alph;States). n States Alph States Prop
|
NDA_fin |
Def F(n) == 2of(2of(n))
Thm* Alph,States:Type, n:NDA(Alph;States). F(n) States  
|
NDA_init |
Def I(n) == 1of(2of(n))
Thm* Alph,States:Type, n:NDA(Alph;States). I(n) States
|
nd_automata |
Def NDA(Alph;States) == (States Alph States Prop) States (States  )
Thm* Alph,States:Type{i}. nd_automata{i}(Alph;States) Type{i'}
|
pi1 |
Def 1of(t) == t.1
Thm* A:Type, B:(A Type), p:a:A B(a). 1of(p) A
|
pi2 |
Def 2of(t) == t.2
Thm* A:Type, B:(A Type), p:a:A B(a). 2of(p) B(1of(p))
|