Thms nfa 1 Sections AutomataTheory Doc

NDA_act Def n == 1of(n)

Thm* Alph,States:Type, n:NDA(Alph;States). n StatesAlphStatesProp

NDA_fin Def F(n) == 2of(2of(n))

Thm* Alph,States:Type, n:NDA(Alph;States). F(n) States

NDA_init Def I(n) == 1of(2of(n))

Thm* Alph,States:Type, n:NDA(Alph;States). I(n) States

nd_automata Def NDA(Alph;States) == (StatesAlphStatesProp)States(States)

Thm* Alph,States:Type{i}. nd_automata{i}(Alph;States) Type{i'}

pi1 Def 1of(t) == t.1

Thm* A:Type, B:(AType), p:a:AB(a). 1of(p) A

pi2 Def 2of(t) == t.2

Thm* A:Type, B:(AType), p:a:AB(a). 2of(p) B(1of(p))

About:
!abstractionspreadalluniversefunction
productmemberpropbool