Thms nfa 1 Sections AutomataTheory Doc

NDA_act Def n == 1of(n)

Thm* Alph,States:Type, n:NDA(Alph;States). n StatesAlphStatesProp

NDA_fin Def F(n) == 2of(2of(n))

Thm* Alph,States:Type, n:NDA(Alph;States). F(n) States

NDA_init Def I(n) == 1of(2of(n))

Thm* Alph,States:Type, n:NDA(Alph;States). I(n) States

assert Def b == if b True else False fi

Thm* b:. b Prop

decidable Def Dec(P) == P P

Thm* A:Prop. Dec(A) Prop

finite Def Fin(s) == n:, f:(ns). Bij(n; s; f)

Thm* T:Type. Fin(T) Prop

iff Def P Q == (P Q) & (P Q)

Thm* A,B:Prop. (A B) Prop

nd_automata Def NDA(Alph;States) == (StatesAlphStatesProp)States(States)

Thm* Alph,States:Type{i}. nd_automata{i}(Alph;States) Type{i'}

pi1 Def 1of(t) == t.1

Thm* A:Type, B:(AType), p:a:AB(a). 1of(p) A

pi2 Def 2of(t) == t.2

Thm* A:Type, B:(AType), p:a:AB(a). 2of(p) B(1of(p))

int_seg Def {i..j} == {k:| i k < j }

Thm* m,n:. {m..n} Type

nat Def == {i:| 0i }

Thm* Type

lelt Def i j < k == ij & j < k

le Def AB == B < A

Thm* i,j:. ij Prop

not Def A == A False

Thm* A:Prop. (A) Prop

biject Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f)

Thm* A,B:Type, f:(AB). Bij(A; B; f) Prop

rev_implies Def P Q == Q P

Thm* A,B:Prop. (A B) Prop

surject Def Surj(A; B; f) == b:B. a:A. f(a) = b

Thm* A,B:Type, f:(AB). Surj(A; B; f) Prop

inject Def Inj(A; B; f) == a1,a2:A. f(a1) = f(a2) B a1 = a2

Thm* A,B:Type, f:(AB). Inj(A; B; f) Prop

About:
!abstractionallimpliesequalapplyuniversefunctionmember
propexistsandfalseless_thanintsetnatural_number
spreadproductboolorifthenelsetrueassert