nfa 1 Sections AutomataTheory Doc

Def NDA(C) q == I(NDA) = 1of(hd(C)) St & (i:(||C||-1). NDA(1of(C[i]),hd(rev(2of(C[i]))),1of(C[(i+1)])) & 2of(C[(i+1)]) = rev(tl(rev(2of(C[i])))) Alph*) & 1of(hd(rev(C))) = q St & 2of(hd(rev(C))) = nil Alph*

Thm* NDA:NDA(Alph;St), C:NComp(Alph;St), q:St, a:Alph, p:St. NDA(C) q NDA(q,a,p) NDA(C+[a;p]) p nd_ext_valcom

Thm* NDA:NDA(Alph;St). NDA([ < I(NDA),[] > ]) I(NDA) nd_init_valcom

Thm* NDA:NDA(Alph;St). NDA([ < I(NDA),[] > ]) I(NDA) nd_comp_init_thm