PrintForm Definitions nfa 1 Sections AutomataTheory Doc

At: nd comp init thm


Alph,St:Type, NDA:NDA(Alph;St). NDA([ < I(NDA),[] > ]) I(NDA)

By:
Unfold `nd_valcom` 0
THEN
Unfold `nd_comp_init` 0


Generated subgoals:

11. Alph: Type
2. St: Type
3. NDA: NDA(Alph;St)
I(NDA) = 1of(hd([ < I(NDA),nil > ]))
21. Alph: Type
2. St: Type
3. NDA: NDA(Alph;St)
4. i: (||[ < I(NDA),nil > ]||-1)
NDA(1of([ < I(NDA),nil > ][i]),hd(rev(2of([ < I(NDA),nil > ][i]))),1of([ < I(NDA),nil > ][(i+1)]))
31. Alph: Type
2. St: Type
3. NDA: NDA(Alph;St)
4. i: (||[ < I(NDA),nil > ]||-1)
2of([ < I(NDA),nil > ][(i+1)]) = rev(tl(rev(2of([ < I(NDA),nil > ][i])))) Alph*
41. Alph: Type
2. St: Type
3. NDA: NDA(Alph;St)
||[ < I(NDA),nil > ]||
51. Alph: Type
2. St: Type
3. NDA: NDA(Alph;St)
1of(hd(rev([ < I(NDA),nil > ]))) = I(NDA)
61. Alph: Type
2. St: Type
3. NDA: NDA(Alph;St)
2of(hd(rev([ < I(NDA),nil > ]))) = nil Alph*


About:
alluniverseequalconspairnil
applyaddnatural_numberlistmemberint