PrintForm Definitions nfa 1 Sections AutomataTheory Doc

At: nd valcom wf


Alph,St:Type, NDA:NDA(Alph;St), C:NComp(Alph;St), q:St. NDA(C) q Prop

By:
Unfold `nd_valcom` 0
THEN
Unfold `nd_computation` 0
THEN
Unfold `list_p` 0
THEN
UnivCD
THEN
Analyze 4
THEN
Analyze 4


Generated subgoals:

11. Alph: Type
2. St: Type
3. NDA: NDA(Alph;St)
4. C: (StAlph*)*
5. ||C|| > 0
6. i:(||C||-1). ||2of(C[i])|| > 0
7. q: St
8. i: (||C||-1)
||rev(2of(C[i]))||1
21. Alph: Type
2. St: Type
3. NDA: NDA(Alph;St)
4. C: (StAlph*)*
5. ||C|| > 0
6. i:(||C||-1). ||2of(C[i])|| > 0
7. q: St
||rev(C)||1
31. Alph: Type
2. St: Type
3. NDA: NDA(Alph;St)
4. C: (StAlph*)*
5. ||C|| > 0
6. i:(||C||-1). ||2of(C[i])|| > 0
7. q: St
||rev(C)||1


About:
alluniversememberpropnatural_number