PrintForm Definitions normalization Sections ClassicalProps(jlc) Doc

At: normalization lemma 1 1 1 1 1 1 1 4 1

1. hyp: Formula List
2. concl: Formula List
3. fhyp.((f) > 0)
4. M: Formula List
5. N: Formula List
6. f: Formula
7. x1: Formula
8. x2: Formula
9. (x1x2) > 0
10. hyp = (M @ (x1x2.N))
11. S:Sequent. (S) < ( < M @ (x1x2.N),concl > ) (L:Sequent List. sL.((s) = 0) & (sL.|= s |= S ) & (a:Assignment. sL.a | s a | S))
12. S:Sequent. (S) < ( < M @ (x1x2.N),concl > ) (L:Sequent List. sL.((s) = 0) & (sL.|= s |= S ) & (a:Assignment. sL.a | s a | S))

L:Sequent List. sL.((s) = 0) & (sL.|= s |= < M @ (x1x2.N),concl > ) & (a:Assignment. sL.a | s a | < M @ (x1x2.N),concl > )

By:
With < x1.(M @ N),concl > (Analyze -2)
THEN
With < x2.(M @ N),concl > (Analyze -2)


Generated subgoal:

111. ( < x1.(M @ N),concl > ) < ( < M @ (x1x2.N),concl > ) (L:Sequent List. sL.((s) = 0) & (sL.|= s |= < x1.(M @ N),concl > ) & (a:Assignment. sL.a | s a | < x1.(M @ N),concl > ))
12. ( < x2.(M @ N),concl > ) < ( < M @ (x1x2.N),concl > ) (L:Sequent List. sL.((s) = 0) & (sL.|= s |= < x2.(M @ N),concl > ) & (a:Assignment. sL.a | s a | < x2.(M @ N),concl > ))
L:Sequent List. sL.((s) = 0) & (sL.|= s |= < M @ (x1x2.N),concl > ) & (a:Assignment. sL.a | s a | < M @ (x1x2.N),concl > )


About:
existslistandequalintapply
natural_numberimpliespairconsallless_than