Definitions
num
thy
1
Sections
StandardLIB
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
gcd_p
Def
GCD(
a
;
b
;
y
) ==
y
|
a
&
y
|
b
& (
z
:
.
z
|
a
&
z
|
b
z
|
y
)
Thm*
a
,
b
,
y
:
. GCD(
a
;
b
;
y
)
Prop
nat
Def
== {
i
:
| 0
i
}
Thm*
Type
not
Def
A
==
A
False
Thm*
A
:Prop. (
A
)
Prop
sq_exists
Def
x
:
A
.
B
(
x
) == {
x
:
A
|
B
(
x
) }
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Definitions
num
thy
1
Sections
StandardLIB
Doc