Definitions num thy 1 Sections StandardLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
gcd_pDef GCD(a;b;y) == y | a & y | b & (z:z | a & z | b  z | y)
Thm* a,b,y:. GCD(a;b;y Prop
natDef  == {i:| 0i }
Thm*   Type
leDef AB == B<A
Thm* i,j:. (ij Prop
notDef A == A  False
Thm* A:Prop. (A Prop

About:
intnatural_numberless_thansetuniversemember
propimpliesandfalseall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions num thy 1 Sections StandardLIB Doc