Definitions num thy 1 Sections StandardLIB Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
atomicDef atomic(a) == a = 0 & (a ~ 1) & reducible(a)
Thm* a:. atomic(a Prop
reducibleDef reducible(a) == b,c:(b ~ 1) & (c ~ 1) & a = bc
Thm* a:. reducible(a Prop
assocedDef a ~ b == a | b & b | a
Thm* a,b:. (a ~ b Prop
dividesDef b | a == c:a = bc
Thm* a,b:. (a | b Prop
iffDef P  Q == (P  Q) & (P  Q)
Thm* A,B:Prop. (A  B Prop
notDef A == A  False
Thm* A:Prop. (A Prop

About:
intnatural_numbermultiplyequalmemberpropimplies
andfalseallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions num thy 1 Sections StandardLIB Doc